AD=A118 614 RHODE ISLAND UNIV KINGSTON DEPT OF COMPUTER SCIENCE =-ETC F/G Qrs2 \‘
* ALGORITHMIC COMPLEXITY., VOLUME Il.(U)
JUN 82 £ A LAMAGNA, L J BASSs L A ANDERSON F30602=79=C~0124

UNCLASSIFIED 8l-}6l=voL=2 - RADC-TR~82-152-vOL -2

NL

N

BENBEY 1 el

UNCLASSIFIED
SECUMTY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE e D BeTRUCTION
T REOFSRY T GovT AECEeoN Ko T RICPENTE EATALSS WoRbIR]
RADC~TR-82-152, Vol II (of two) [ap-At¥ g/z;

4. TITLE (and Subtitle)
ALGORITHMIC COMPLEXITY

$. TYPZ OF REPORT & PEMOO COVERED
Final Technical Report

June 1979 - t 1981
6. PERFORMING ONG. ll’o_l? NUMBER
81-161

7. AUTHON(®
Edmund A. Lamagna Ralph E. Bunker
Leonard J. Bass Philip J. Janus

S CONTRACY OR GRANT nunBERCe) |
F30602-79-C-0124

Lyle A. Anderson
. PERFORMING ORGANIZATION NAME AND ADORESS

University of Rhode Igland

. PROGRAM ELEMENT. PROJECY, TA
AREA & WORK UNIT NUNBERS

Rome Air Development Center (COEE)
Griffiss AFB NY 13441
[TT RONITOMING AGENEY NAME & ACORESH(I! dilferent from Conireliing Office) |

Same

Dept of Computer Science and Statistics 61101F

Kingston RI 02881 LD9202C1

tt. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT DATE
June 1982

{13, NUMBER OF PAGES

sttt eama
15. SECURITY CLASS. (of this repert)

UNCLASSIFIED

e, SEEIEW'ICA'I’IO 7TOOWNGRADING
SCHEDULE "

[76. DISTRIBUTION STATEMENT (of this Repert)

Approved for public release; distribution unlimited

Same

17. OISTRISUTION STATEMENT (of the abetract entered in Block 20, if different from Repert)

6. SUPPLEMENTARY NOTES
RADC Project Engineer: Joseph P, Cavano (COEE)

[19. KKY WORDS (Continwe on eide I y and
Analysis of Algorithms
Computational Complexity
Software Quality

Efficiency

fy by block number)

ABSTRACT (Continue on

parts. This volume, containing Parts 3 through

The objective of this study was to conduct applied regsearch directed
toward understanding the relationship between the complexity or efficiencJ
‘of algorithms and the overall quality of computer software. The final
report is presented in a two volume series consisting of a total of eight

several technical investigations which were conducted.
Part 3 is a tutorial on computational algebra, illustrating the nature o

8 describes the results off

DD . 5", 1473 zoimon o 1 nov e8 13 ossoLETE
1)

|

UNCLASSIFIED
SECURITY CLASHFICATION OF THIS PAGE (When Dote Entere)

LA 4 i

-

S e wa

- — -

Cont kY

UNCLASSIFIED
SECUMTY CLASHIPICATION OF THIS PAGE(When Dete Eniered)

research in the area of algoritim analysis and computational complexity.
The specific.problems examined include raising a number to a power, \
evaluating a polynomial at one or several points, and multiplying poly-//
nomials and matrices. S T e e T

Cijart 4 develops a systematic approach to the analysis of algorithms. The
method consists of translating program loops into recursive subroutines,
and the semantic manipulation of expressions representing the joint probad
ility distribution function of the program variables. This technique¢ is
applied to several simple algorithms, sorting and gsearching algorit
and a tree insertton/deletfon algorithm.

Part 5 1s an experimental analysis of a fast, new sorting method called
DPS (distributive partitioning sorting). It develops a framework for

conducting such experiments, and proposes several improvements to DPS for
q_giung with data from unknown or skewed /distribution.

DPart 6 applies order statistics to investigate the expected quality of
several approximation algorithms for the Euclidean traveling sslesman
roblem, known to be NP-completeD

»J

[

art 7 presents a survey of data base access methods for both univariate
and multivariate range queries., The technfques discussed include B-trees

and extensible hashing for the jpnivariate case, and radix bit mapping and
K-D-B-trees for the multivariage case.

bPart 8 describes an experimental evaluation of the frame memory model of

a data base structure rame memory is an analytic model which enables
the prediction of a€Ceks performance measures in terms of user behavior
parameters.

Aecessionﬂ‘For

[NTIS GRA&I

i PTIC TAB

:{ U~announced (]

] Jastification ———
f—

pistribution/

’Ava nabiuty“ques

[~ '‘Avail and/or
Diont Special

UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu'* PAGE(When Date Bntered)

—_—— e
—

- —

SRS

e o A st S

:) { !
o P —— i—M

PREFACE

This is the second of two volumes constituting the final
technical report for a study entitled "Algorithmic Complexity".
"The work was performed in support of the Information Sciences
Division, Rome Air Development Center, under U.S. Air Force
Systems Command contract F30602-79-C-0124. The duration of the
project was from June 1979 through August 1981.

The research described herein was performed by members of
the Department of Computer Science and Experimental Statistics
at the University of Rhode Island. Dr. Edmund A. Lamagna served
as Principal Investigator for this effort. ODr. Leonard J. Bass
was Co-Principal Investigator. Three graduate assistants --
Messrs. Lyle A. Anderson, ﬁalph E. Bunker, and Philip J. Janus
-- also worked on the project. Technical guidance was provided :
by Mr. Joseph P. Cavano, RADC Project Engineer. !

ot

} The study consists of eight parts, whose titles are:
. 1. Measures of Algorithmic Efficiency: An Overview (Lamagna)

e # i Y O e v,

J 2. The Performance of Algorithms: A Research Plan (Lamagna,
- Bass, and Anderson)

* 3. Fast Computer Algebra (Lamagna)
4. Systematic Analysis of Algorifhms (Anderson) f

é 5. Adaptive Methods for Unknown Distributions in Distributive
: Partitioning Sorting (Janus)

6. Expected Behavior of . Approximation Algorithms for the
Euclidean Traveling Salesman Problem (Lamagna with E. J.
Carney and P. V. Kamat)

—r TR

7. Data Base Access Methods (Bass)

8. An Experimental Evaluation. of the Frame Memory Model of a
Data Base Structure (Bunker and Bass)

Volume 1 contains Parts 1 and 2, comprising a general ’
introduction to the entire series and a research plan. Volume
I1 contains the remaining six parts, describing the results of
several technical investigations which were conducted.

3-1

—

e —— . = P et

-

——

ALGORITHMIC COMPLEXITY
Part 3

— =

Yy

Edmund A. Lamagna

e ———— et At —

FAST COMPUTER ALGEBRA l

Abstract

Hew algorithms for solving familiar algebraic problems on computers have

recently béen devised. These methods are more efficient than classical

ones for large problem sizes, and some can be shovn to be optimal. This
tutorial illustrates these ideas by examining the problems of raising a

number to a power, evaluating a polynomial at one or several points,
and multiplying polynomials and matrices,

This work was supported by Air Force Systems Command, Rome Air Danlopunt
Center, under Contract No. F30602-T9-C~012k.

:- it q
3-11

FAST COMPUTER ALGEBRA

The astounding speed of modern digital computers'has made it possible to
perform computations of a size that would be completely infeasible without
their use. For example, the fastest computers of today can solve a system
of one hundred simultaneous linear equations ir a hundred unknowns in a
matter of seconds. If a person could perform one arithmetic operation, such
as an addition or multipliéation, per minute and worked on the problem non-stop
using the classical method of Gaussian elimination, it would take almost one
year to ¢btain the same result. In fact, under the same assumptions, it
would take a person Just over a day to solve a system of only a dozen equations.
The calculations of our tireless human computer are, of course, far mcre
susceptible to error.

Before the advent of digital computers, the sizes of most algebraic and

numeric problems which could be solved was severely limited although it was

known how to solve large problems in principle. Because the sizes of the i
problems tackled by hand were small, applying a simple formula usually sufficed
to produce the desired results. Little attention was generally paid to finding
computationally efficient, but perhaps longer, formulas or methods of calculation
During the past decade, a new branch of mathematical computer science

known as analysis of algorithms and computafional complexity has blossomed.

The goal of this field is to compare the relative efficiency of alternative
techniques for solving a problem and, whenever possible, to prove that some

method is the best one could hope to find. As a result of this work, a

number of surprising new algorithms, or computational procedures, have been h
developed. These techniques sometimes seem counterintuitive at first and often
do not outperform the classical methods for small problem sizes. Howevery as
the problem size increases, the imprcrement in execution speed on a computer

can be quite dramatic. 3~1

Rt . S L RSN S A

- ——— o = s n e e e - s

R AU

As a simple example of such a result, we consider the problem of multiplying

two complex numbers. A single complex number is generally denoted by a pair of
values representing its real and imaginary parts. The product of two such
numbers a+bi and c4di is given by the formula (ac-bd)+(ad+bc)i, where i is
/1. Suppose we are given g and b, representing the real and imaginary part of
the first complex number, and ¢ and d, representing the corresponding parts of
the second number, and are asked to calculate the real and imaginary parts of
their product. Computers represent and operate on complex numbers in just
this manner. Applying the formula for complex product, four multiplications
(viz., ae, bd, ad, and bc), one subtraction (viz., ac-bd), and one addition
(viz., ad+be) are used.

An alternative method for computing the result is as follows. First add
a to b ard ¢ to d, multiplying these two sums: (a+b)-(c+d)-ac+ad+bc+bdaml.
Next form the two products m2=a-c and m3=b-d. The real part of the complex
product can be formed as mz'-ms and the imaginary part as m{qri-mg. This method
uses three multiplications, two additions, and three subtraétions. Although
this new method performs eight operations to the classical method's six, it

does use one fewer multiplication. But a multiplication operation executes

far more slowly than either an addition or subtraction on a camputer. (Additions

and subtractions execute at comparable speeds.) If a multiplication takes a
not uncommon factor of ten times longer, the new procedure for complex product
will run about 20% faster than the classical one. Due to the speed of digital
computers, this improvement will go unnoticed if only a few complex products
are to be taken, however it can become increasingly important as the amount of

work to be done grows.

3-2

S e o

In order to compare the efficiencies of alternative algorithms for
some algebraic problem, we will have to make more precise just what types
of computations will be allowed. Researchers who study the complexity of
algebraic problems use a model of computation called a "straight-line
algorithm". Within this framework we are given a set of input data plus
any constants we choose to work with. Algorithms consist of a sequence
of steps in which arithmetic operations are applied to the input data,
constants, or the results obtained in previous computation steps. Figure
2 shows two straight-line algorithms which evaluate the polynomial
ptz)=ed+hx?+52+2 given the value of the variable x as data.

To assess the efficiency of an algorithm, we will count either the
total number of arithmetic operations performed or the number of some
specific type (e.g., multiplications). This model of computation ignores
many practical .considerations which will affect the running time of an
algorithm if it is actually programmed to be executed on a computer. In a
programmed realization, the operations to be performed are systematically
specified using loops and tests so that the program will work for all
input sizes. The straight-line algorithm paradigm neglects the cost of
the overhead associated with loop control and testing operations, as well
as the time required to fetch and store information inside a computer's
memory. These costs can vary greatly from computer to computer, and will

not even be the same for two programming language compilers implemented on

the same machine. Fortunately the overall times of the algorithms studied

are driven primarily by the underlying structure of the'grithmatic
operations performed, rather than such overhead considerations, so the

results obtained are generally accurate to within a small constant factor
for actual implementations.

RO SO P S S

-~

e ek

Evaluation of Powers

Suppose we are given s real number x and a positive integer » and

are asked to find the value of x". The obvious way to solve this problem
is to start with x and multiply by £ a total of n-1 times. For example,
to find 2’2 we compute each of the partial results z2,z%,z%,...,z%,z%2
and arrive at the desired answer after 31 multiplication steps. We will
call this algorithm the "brute force" method of computing z.
A more efficient way to arrive at x£?2 is by repeated squaring of

each partial result. For example, at the first step we square x to obtain
2

22, At the second step x? is squared to yield z*, and so on. Using this

technique we arrive at 32 in 5 multiplications via the following sequence

of partial results: x?,z",z%,x16,2%2.

The method of repeated squaring can be used to compute z" with 1og2 n
multiplications when n is a power of two. (If y=logzz, the base-2 logarithm
of x, then 2y=z.) This achieves an exponential improvement over the brute
force method. The difficulty is that the algorithm can only bé used
directly when n is a power of two.

An algorithm called the "binary method" generalizes the principle ;
of repeated squaring to work for all values of n. To apply this technique,
we begin by writing down the binary representation of the number » with
any leading zeros deleted. For example, if n=21 we write 21=(10101)2.
Ignoring the first bit in the binary representation (which must be 1),
we next replace each remaining 1 by the letters SX and each O by the letter
S. When n=21 we obtain the sequence of letters SSXSSX. This sequence

yields a rule for evaluating zt it we interpret each S to mean "square

the result of the previous step" and each X to mean "multiply the result
of the previous step by z=".

3-4

- o

e a———

W W Y o) e i f

A ';'m':"'-’w‘i O e

In our example, we begin by squaring x to obtain x? since the first
letter in the sequence is S. We next square this partial result to obtain
=" since the second letter is again S. Because the third letter is X,
ve multiply the result of the second step by x to yield x° at the third

step, and so on. Hence we arrive at z2! by the following éequence of

20 1

partial results: x?,z"%,x%2'0,229 22!,

We now wish to investigate the number of multiplication stéps the
binary method uses to compute :cn. There are llogzn J+1 bits in the binary
representation of n. (Lx] denotes the "floor" of z, or the larges:b
integer less than or equal to x.) Let v(n) denote the number of these
bits which are 1. Since one S occurs in the evaluation sequenc;e for each
bit in the binary representation of n other than the first, the ntmbér of
squaring operations used is Llogzn_l. Furthermore, the number of X's in
the sequence is Just one less than v(n). Hence Llogzn_]w(n)41 multi-

Plicstions are used overall. Since v(n)<llog nJ+1, with equality holding
when all the bits in n's representation are 1, the number of steps in the
binary method does not exceed 2Llogzn_l. :

The smallest value of n for which the binary method is not optimal i
is 15. The binary method uses 6 multiplications to evaluate x'5, with ?
the sequence SXSXSX giving rise to the partial results z2,z%,z%,27,z'%,z!5.
However, x'°® can be calculated in 5 steps by first finding y==®, and
raising y to the fifth power with three more multiplications since
ys,(zs)s, zl s'

This method for computing x!% is based on the realization that 15 can
be factored as 3 times 5. In general if the number 7 can be factored as
n=p-q, then Z" can be evaluated by first computing y-zp and then calcu-
lating yu(aP)TweP Tz, We now describe an algorithm called the "factor

method” which is based upon this principle.

3-5

e

Algorithm F: factor method. (Note that a prime number is one
having no integer factors other than 1 and itseif.)

Fl. If n=l, we have z" with no calculation.

F2. If n is prime, calculate " by first finding 21 using the
factor method; then multiply this quantity by =z.

F3. Otherwise, write n as p-q, where p is the smallest prime factor
of n And q>l. Calculate ' by first finding #F via the factor method;
then raise this quantity to the qth power, again via the factor method.

We illustrate this technique by showing how 2! is evaluated. First,
21 ig factored as 3,7, and 2% is calculated by repeated use of the algo-
rithm with 2 multiplications. Our problem reduces to calculating y7
vhere y=r®. Since T is a prime, y’ will be computed by first finding
y‘ and then multiplying by y. Repeated use of the algorithm reveals
that y° will be found by taking (y2)°. - Letting 2=y?, the steps used to

evaluate z?!

are: (1) z-z=x?, (2) z?.z=x3=y, (3) x®-z’=xSsy?=z,
(4) xS z8=x'2=32, (5) 212.25x1%=2%=(y2)?, and (6) 218 23=p2ley by,
Although the performance of the factor method is better thanm th.t
of the binary method on the average, there are instances when the binary
method is superior. The smallest such case is n=33, where the factor
method uses 7 multiplications and the binary method only 6. In fact
there are infinitely many values of 7 for which the factor method is
better than the binary method, and vice versa. Moreover, neither the
factor method nor the binary method need be optimal. The smallest such
case is n=23, where both the factor and binary methods use 7 multiplicatioms.
However, z2% can be calculated with 6 multiplications as follows:
(1) z.z=?, (2) z2.2=?, (3) z®-z?=05, (L) z5.25=x!9, (5) 210 x!%=x20,

and (6) x2%.z3=c?3,

3-6

AR

.

Since neither the factor method nor the binary method is always
optimal, it would seem worthwhile to investigate jJust how good these two
methods are. Let P(n) denote the minimum number of multiplications
required to calculate Pl regardless of the method employed. Observe
that the greatest power of x which can be obtained using kX multi-
plications is xzk, and this is obtained by successively squaring x at
each step of the computation. Thus in order to compute a power of x as
large as .'cn, we must use at least k multiplications where 2k3n, or
equivalently, k:l'logzn'l. ([denotes the "ceiling" of x or the smallest
integer greater than or equal to z.) Therefore P(n)zl'logzn'l.

The above result provides a lower bound on the number of multi~
plications required to compute z". It states that at least rlogzn'l
multiplications are necessary, but gives no indication at all of whether
this number is sufficient. Our earlier analysis of the binary method
further reveals that P(n)fel_logznj , and hence the binary method is
guaranteed to be efficient in the sense that it never uses more than
twice the minimal number of multiplications. The factor method demon~
strates that if n=p.q, then P(n)<P(p)+P(q).

The tree in Figure 4 gives a minimal, or optimal, multiplication

. sequence when 7 is 100 or less. To calculate :cn we locate n in the tree.

The path from the root (bottom) of the tree to n indicates the sequence
of exponents which occurs in one optimal evaluation of z'. The value of
P(n), for 1<n <100, is simply the length of the path in the tree from
the root to n. For exsmple, to compute z°' we find that we should
calculate the following powers of z: 2, 3, 5, 10, 11, 21, 31. Hence an

optimal chain is given by: (1) z.x=z?, (2) z?-z=x?, (3) z?-z?=x®,

3-7

e _ a— ..

ALy D15t Snadh G o S8 miD e s &

e

e

(4) zs,zsgxxo’ (s) x”-m“, (6) zu.zxogzzx, (7 zzx,zu_xu. The idea

behind the method is that any number in the tree can be written as the sum
of two numbers, or twice a single number on the path between itself and the
root. The sums formed to reach n in the tree correspond to the intermediate
povwers formed in calculating zn. Of course we knew all along that zg'zb=£a+b.
In our discussion of the power evaluation problem we have concentrated
on the operation of multiplication. Neither addition nor subtraction are of
any help in evaluating powers. But what about division? We have just seen
that 7 multiplications are minimal to compute z3!. However if division is
alloved, z! can be found in 6 operations by calculating x*2 with 5 multi-
rlications via repeated squaring, and then dividing this quantity by =x.
Unfortunately, the availability of division dces not alter our lower bound
on P(n), end hence cannot substantially improve on the algorithms we have
discussed.
The problem of finding an optimal computation sequence for zn ﬁas a
long and interesting history. Although Arnold Scholz formally raised the
question in 1937, before the appearance of digital computers, algorithms for
computing z had been studied for some time earlier. A version of the binary
method was expounded by the famous French mathematician Adrien M. Legendre in
1798, and it is closely related to a multiplication procedure used by Egyptian
mathematicians as early as 1800 B.C. Several authors have published statements
of the optimality of the method but, as we have seen these claims are false.
We note in closing that the algorithms studied work not only for single number,

but carry over to the problems of raising polynomials and matrices to a power.

3-8

o

Evaluation of Polynomials
The next problem we consider is that of evaluating a general polynomial

of degree n. Such a pQlynomial may be written as p(x):cnzn+cn fn_1+...+c x+e
- 1

0
We want to devise an efficient scheme to evaluate any such polynomial when

given the values of the coefficients cn,c

n_l,...,cl,co and the variable x as

data.
The usual method for evaluating a polynomial is to apply directly the
general formula given above. In so doing we first calculate each of the
powers of x using n-1 multiplications. Next we take the product of each
coefficient and its corresponding power. This requires another n multiplications.
Finally the n+l terms in the canonical expansion are surmed with » additions.
Thus a total of 2n-1 multiplications and n additions are used by this method.
When the term-by~term method described above is applied to the degree
two polynomial c2x2+olz+co, three multiplications are performed: -z, cz-xz,
cl-z. This number can be reduced to two by observing that & can be factored
out of the first two terms, yielding the formula (c2x+cl)x+c°. The number of i
additions remains two.

This insight suggests that we rearrange degree n polynomials as p(x)#

(...(cnz+cn_l)z+cn_2)z+...+cl)x+c°. To evaluate the polynomial we start with i

cn , multiply by z, add C,1? multiply by x, add cn_z, multiply by £,..., add

co. This method was expounded in 1819 by William G. Horner in conjunction with
an efficient technique for finding the coefficlients of the polynomial pl(x+a).
Today the method is usually referred to as "Hornmer's rule" although it was

actually devised by Isaac Newton over 100 years earlier in 1T11.

Horner's rule employs n multiplication and n addition steps to evaluate
polynomials of degree n. We might ask whether it is possible to do better.
The answer is no for general polynomials in which all of the coefficients and
the variable z are left unspecified. Of course particular polynomials, like

the one examined in Figure 2, can be evaluated with fewer operations.
3-9

We can readily see that 7 addition/subtraction steps are required because
any scheme for evaluating p(x) clearly works when z=1 and p(l)'cn+cn-1+"'+5$'
This implies that Horner's rule can be adapted to find the sum of any n+l
numbers by letting these numbers play the roles of coefficients and setting
x to 1. Since n add/sub steps are required to sum n+l numbers and our adap-
tation of Horner's rule uses exactly this many, the method is optimal with
respect to the number of add/sub steps. A demonstration that »n mult/div steps
are also required is more complex. Since such a proof is based upon more
advanced concepts of linear algebra, we shall omit the details here.
Eduard G. Belage, a Russian mathematician, first demonstrated the i

necessity of n add/sub steps in 1958. Another Russian, Viktor Pan, showed in

1966 that n mult/div steps are also required. In 1971 Allan Borodin of the

Univergity of Toronto further proved that Horner's method is uniquely optimal
in the sense that it is the only way to evaluate a general nth degree polynomial
with 2n arithmetic operations.

Next we consider the problem of evaluating an nth degree polynomial at
several points. Applying either the classical algorithm or Horner's method

at, say, each of n points requires a number of operations proportional to n?,

Using the concept of a "modular transform", we shall obtain an algoritim whose
performance is only slightly worse than linear in 7, resulting in a considerable
speed-up for increasingly larger values of n.

Evaluating a polynomial at the single point x=a is equivalent to finding
the remainder when p(x) is divided by x-a. This follows from the Remainder
Theorem of algebra, since we can write p(xz)=(z-a)q(z)+r(x) vhere gq(z) and r(x)
are the quotient and remainder polynomials, respectively, when the division is
performed. Note that the degree of g(x) is one less than that of p(x) and r(z)
is a constant. Setting z=a we obtain the desired result, that p(a) is equal to

the constant r.
3-10

s B . e

d— - ~ ~

This technique can be generalized to the situation in which we wish to
evaluate the polynomial p(x) at : points, @ 28, seeslys vhere k < degree of p.
We first form the product m(x)t'n (z—ai). Again from the Remainder Theorem,
we rind that p(a:)-m(a:)q(z)i-r(x)t:iere q(x) and r(x) are the quotient and
remainder polynomials when p(x) is divided by m(x). At each of the points
z=q, the value of m(a,)=0, so we have p(a;)=r(a;). Since the degree of r is
less than that of p, we have reduced our problem to the simpler one of
evaluating r(x) at the k points.

A common property of many fast algorithms is that they reduce a problem
to a simpler one by dividing it into two subproblems, each of which is at most half
as difficult as the original problem. Applying this principle, a fast algo-

rithm for the problem of evaluating an nth degree polynomial at n+l points

suggests itself, First, divide the n+l points in half and form the poly-

n/2 n+l
nomials m (z)= 1 (z—a Yand m (z)= 1 (x-ai). Analogous to what we did
1 i, 2 f=n/2nl

above, we next divide p(x) by m (z) to get r (:c) and m (x) to get r (a:) We
have now reduced our original problem to that of evsluating the two n/2—th
degree polynomials rl(z) and rz(z) at n/2+1 points. To do this we apply the
method repeatedly.

For example, suppose we wish to evaluate the polynomial p(x)=z’-2x2+3z+l
at the points z=-1,0,1,2. We first form mx(z)a(ul)mzm and mz(:n)-(z-l)(z-2)=
z2-3z+2. Dividing p(x) by ml(z) and mz(x), we obtain rl(x)s&»l and rz(x)=h:c-1.
Dividing rl(x) by z+1 and z, ve £ind from the remainders that p(-1)=-5 and
p(0)=1. Similarly dividing rz(.'c) by z-1 and -2, we get that p(l)= 3 and p(2)=T.

The tree in Figure 6 illustrates the wanner in which the products m i(z).
or "moduli", are built up in general. The divisions of p(x) and the subsequent
remeinders are computed in the reverse order. If the products are formed
moving from the top of the tree downward, and then the divisions are performed
going from the bottom of the tree upward, only one polynomial multiplication

and one polynomial division need be performed for each node in the tree.
3-11

P QR

b i ot ca— e

&Sy

It turns out that the number of scalar arithmetic operations required
to either multiply or divide two polynomials of like degree are the same to
within s multiplicative constant. Because of this, the running time of our
algorithm for evaluating an nth degree polynomial at n+l points is driven by
the time required to symbolically multiply two polynomials given their co-
efficients. In fact the overall running time of the modular transform
algorithm described above is just a factor of log 7 greater than the time
required to multiply two polynomials of degree n. With this motivation we

now turn our attention to the polynomial multiplication problem.

Polynomial Multiplication
In the polynomial multiplication problem, we are given two polynomials

represented by their coefficients as data and are asked to compute the co-

efficient representation of their product. Let the two input polynomials be
n-1 . n-1 s

plx)= | aixtand qz)=] b ia.-". (Tt will be easier to work with polynomials
=0 =0 .

-

7

having n coefficients and degree n-1l, rather than those of degree n.) Their
2n-2

product is a polynomial of degree 2n-2, p(x)-.q(z)= } ckzk, whose coefficients
k k=0

expressed in terms of the inputs are o { a, ibi' Note that ck is the sum
=0
of all products of the form a.b. in which i+j=k. Thus e=a b , c=a b+a b ,
tJ o 00 1 10 01
e=ab+ab+ab , etec.
2 20 11 02

The classical algorithm for polynomial mnltiplication is to apply the

formula given above to compute each coefficient in the result directly. 1In so

doing n? scalar multiplications are used since every product of the form aibj’

involving one of the n coefficients from ~ach input polynomial, is formed

exactly once. The total number of additions made is equal to the number of

aibj pairs less the number of coefficients formed, or n2-(gn-1). For example,

it p(z)-alz*ao.aud q(z)-blx+b‘, the product is p(z)-q(z)-(a‘bl)x’+(a‘b°+a°bl)z

+a°b°. Here n=2 and we see that 22al multiplications (viz., axbx’ axbo’ aobl,

aobo) and 22-(2°2-1)=1 addition (visz., alb'+a°bl) are performed.
3-12

R

C e

It turns out that the product of two 2-coefficient polynomials can be
found with 3 multiplications, instead of the usual 4. This product can be
expressed in terms of the three multiplications ml=a°-b°, m2=;l-b1, and
M’=(dl+a°)'(bl+b°) as p(x)-q(z)=mzxz+(m!-mz-ml)z+ml. Although this scheme
uses U add/sub steps, it can serve as the basis for an algorithm to multiply
two n-coefficient polynomials with a substantiglly smaller toﬁal number of
operations than the classical algorithm for increasingly larger values of 7.

To see how such a reduction in work is possible, consider the case when
n=l. The classical algorithm uses 4%=16 multiplications to find the product
of the two polynomials p(m)msz’mzzzmlxmoand q(z)=b3.r’+b2x2+blx+b°.
Observe that we can split these polynomials into upper and lower halves, ex-
pressing them as p(x)=s(x)x?+t(x) and q(x)=u(xz)x?+w(x) where s(x)= a x4 ,
t(z)aalz+a°, u(z)abax#b;, and v(x)-blz+bo. In this form the product
p(z)-q(x)msux" +(sv+tu)z +tv.

If we take each of these 4 subproducts of 2-coefficient polynomials in
the classical way we use L:4=16 multiplications. But instead we can take
advantage of our 3 multiplication scheme by forming the products ml=¢-v,
m;ss-u, and m3=(a+t)~(u4v). Since each of these 3 products of 2-coefficient
polynomials can be found by a repeated application of the 3 multiplication
scheme, only 3-3=9 scalar multiplications are used. The desired result is
p(z)q(z)em z®Hm -m -m)z4n . The details of this scheme are illustrated in
Figure 11.

Now let us generalize to the case of arbitrary size polynomials. For
simplicity we will assume that the number of coefficients, m, is a power of
tvo although a similar result can be derived for any value of n. We begin by
dividing the coefficients of the imputs into upper and lower halves, expressing

these polynomials as p(z)-a(z)z"/ad-t(x) and q(z)-u(x)z"/aw(z). We next form

3-.13

the following products of n/2-coefficient polynomials: mlat-v, mzts-u, and
m’=(a+t)-(u+v). In taking each of these products, we will apply the algorithm
recursively (i.e., repeatedly) until n=l. The desired product p(x)-q(x) is
ultimately formed as mzxn+(ms—mz-ml)z"/2#m .

The approach to the polynomial multiplication problem described above is
an example of what is known as a "divide-and-conquer™ algorithm. The idea
behind this common algorithm design technique is to split a problem into a

number of subproblems of the same kind involving disjoint subsets of the

inputs. The subproblems are solved separately by reapplying the divide-and-

conquer strategy, and then a method is found to combine the solutions of
these subproblems into a solution of the whole problem. Frequently, as in
the case of polynomial multiplication, a divide-and-conquer approach can
lead to a more efficient algorithm than a direct attack on the original
problem. We shall see another application of this paradigm later.

We now investigate the efficiency of the divide-and-conquer polynomial
multiplication algorithm. Let M(n) denote the pnumber of scalar multiplications
performed in taking the product of two n-coefficient polynomials. Since the
scalar multiplications made in forming tﬁe product of the two original
polynomials are exactly those used to compute the resulting 3 products of
n/2-coefficient polynomials, we have that M(n)=34(n/2). This equation, called
& recurrence relation, can be solved by back-substitution as follows:
M(n)=3M(n/2)=BzM(n/4)=...=5kM(n/2k). The process stops when 2k-n or k-logzn,
st which point we use the initial condition M(1)=l to obtain M(n)=31082"my1%823,
(M(1)=1 since one multiplication is used to find the product of two l-coefficient

polynomials, aobo') Because 1032351.59, the divide-and-conquer algorithm uses
1.89

n scalar multiplications to the classical algorithm's n2.

3-14

. —_

Y

[l

)

i

i

|

RO SN :“_‘y'h M o i’

T j o B A . . M
_ N ‘ L

PP

We next obtain a recurrence relation for the number of scalar add/sub
steps, A(n). The additions performed when multiplying two n-coefficient
polynomials arise from three sources: (1) recursively applying the algorithm
to find 3 products of n/2~coefficient polynomials, (2) performing 2 additions
of n/2-coefficient polynomials (viz., s+t, u+v)and 2 subtractions of (n-1)-
coefficient polynomials (vis., ms-mz-ml), and (3) forming the coefficients
of the original product from the results of recursively applying the procedure
(e.g., the additions d +d andd +d in the third step of Figure 11).

250 132 150 012
By definition, there are 34{n/2) additions from the first source. The sum of
two polynomials is found by merely adding their corresponding coefficients,
so the second source contributes 2(n/2)+2(n-1)=3n-2 additions. The third
source generates n-2 additions. Hence the desired recurrence relation is
A(n)=34(n/2)+Un-k, whose solution with initial condition 4(1)=0 is A(n)=
6n1°8 23 _gn4o.

We have just shown that both the number of multiplications and add/sudb
steps in the divide-and-conquer algorithm grow proportionally to n!'%%. This
can represent a substantial improvement over the classical algorithm, where
the number of operations growa as m2. When n=8 the total number of arithmetic
operations performed by both glgorithms are comparable: 127 for divide-and-
conquer to 113 for the classieal method. PFor larger velues of n the divide-
and-conquer method is superior.

Is this the fastest that two polynomials can be multiplied? The method
Just described is based on the fact that +he produet of 2-co:fficient poly-
nomials can be found with 3 multiplications. It ylelds a general algorithm
for n-coefficient polynomials in which the number of scelar arithmetic oper-

log,3' Using a divide-and-conquer approach, it

ations perfcrmed grows as n
is possible to comvert any scheme for computing the product of two polynomials

of some specific size m with p multiplications into a method for multipliying

3-15

arbitrarily large n-coefficient polynomials using a(nlogmp) operations.

(The O-notation denotes the order of magnitude of a function's growth rate,
ignoring any constant factors of proportionality.) If m and p are such that
logmp < 1.59, the resulting algorithm will be asymptotically better than
the one we have discussed. To date no one has been able to produce a faster

algorithm using such a strategy.

Algebraic Transforms

One way to specify a polynomial is to give its coefficients. This is
the only representation we heve been working with up to now. A well-known
result in algebra states that there is a unique polynomial of degree less
than n which will fit through any 7 points. Thus an alternate representation
for a polynomial is to give its values at n points.

The product of two m-coefficient polynomials is a polynomial with 2n-1-
coefficients. Such a polynomial can be uniquely represented by its value at
2n-1 points. This suggests a new method for multiplying the n-coefficient
polynomials p(x) and q(x). We begin by evaluating both p(z) and g(z) at

2n-1 selected points, x=al,a2,...,a We next multiply together the

2n-1"
corresponding values of the polynomials at these points, forming 2n-1 products
p(ai) q(ai). The polynomial which uniquely fits these 2n-1 values is the
desired product p(x)-q(z).

This approach to multiplying two polynomials is called an algebraic

transform. Instead of dealing directly with the coefficients of p(z) and q(x),

as we have done previously, we first transform the coefficient representation
of p and ¢ into another form, ome in which the polynomials are represented by
their values at a collection of points. We perform the actual multiplication

on this second representation by taking the pairwise products of the values of

3-16

P

p and q at the sample points. We now have a representation of the product
polynomial in the form of its value at a number of points, and must perform
an inverse transformation to obtain the coefficient representation of thi
result.. This final step is called intefpolation. The entire process is
illustrated in Figure 12.

In a previous section we considered the problem of eveluating a polynomial
at several arbitrarily selected points. The performance of the algorithm we
described is asymptotically the best of any method known to date. This
algorithm uses a number of basic arithmetic operations proportional to
n(log n)2 when eveiuating an n-coefficient polynomial at 2n-1 points. Similarly,
the best #nown algorithtm for interpolating a polynomial through 2n-1 arbitrary
points also performs a number of Lasic arithmetic operations proportional to
nQog %)2. (The more familiar classical interpolation algorithms of Isaac
Newton and the noted French mathematician Count Joseph Louis Lagrange employ
a number of operations growing as n2.) Thus the number of operations used

in the transform method for multiplying two polynomials is dominated by the

evaluation and interpolation steps, rather than the 2n-1 pairwis: multiplicationms,

and is O(nllog n)?).

In the transform Just described, the values of x where the evaluation and
1nter?olation take place are arbitrarily cﬁosen. It turns out that a judicious
choice of points can lead to a slightly improved algorithm. Observe that the
polynomial p(z)-aomlx-h. 'mn-f’b L.an be broken into a sum of odd and even
povered ternms: p(z)-(a°+azz’+...+a”_23"'2)+(alz+asz’+...+an_lz"'1). Substi-
tuting y=x2, we have p(z)s(a’+azy+...+an_2yn/2-l)+c(al+a’y+...+an_1y”12'1)=
8(y)+zt(y). Thus the problem of evaluating the n-coefficient polynomial p(z)
reduces to the problem of evaluating two polynomials s(y) and #(y), of half
that size,plus three sdditional operations: y=r?, z-t(y), s(ylezt(y). Hov-
ever, we are still faced with the task of evaluating both & and ¢ at the same

number of points, and no reduction in the number of operations has occurred yet.
3-17

Ao Badh iy A

———

e e 2

When the points where the evaluation and interpolation take place are
chosen to be the primitive n-th roots of the equation xn=l, the process can
be speeded. If w is one of these primitive n-th roots of unity, then W=l

and wk#l for all k<n. Moreover, if n is even then w? is a primitive n/2-th

root of 1 since wn=(wz)n/2=l. F‘urthemore,mn/ 2=-l which is easily verified

We now return to the problem of evaluating ou;' odd and even sum polynomial
plx)=8(y)+xt(y), where y=ar?, but at the n distinct points r-wj for 0<j<n-1.
Then p(ufi)=s(w2j)+wjt(w2j) and p(wﬁn/z)sa(mej)-wjt(waj), since W2
ijn/ 2=-w'i and (m‘j+"/ 2)2=(—m'i)2=m2j. These formulas reveal how the problem
of evaluating the polynomial p(x) at 7 points can be divided info two sub-
problems which involve evaluating polynomials of half the original size at
half as many points. The subproblems are the evaluation of s and t, both
having n/2 coefficients, at the points w2j=(mj)2 for 0<j<n/2-1, the primitive
n/2-th roots of unity.

This strategy for splitting the problem can be applied repeatedly until
we eventually arrive at the trivial problem of evaluating a constant poly-
nomial. The total number of scalar arithmetic operations performed is
governed by the recurrence relation T(n)=2T(n/2)+cn, where the last term
represents one addition and one multiplication for each point z,. (The
number of multiplications can be cut in half by realizing that Zinf2™ j')
Since the roots of unity are in general complex numbers, several scalar
operations will be needed for each arithmetic operation as written. The
solution to the recurrence, with boundary condition T(1)=0, is given by
T(n)=on logzn for n a power of two.

The algorithm described yields an O(n log n). algoritim for polynomial

mltiplication, the asymptotically best method kmown. It is still an open

3-18

-t

D d—

. ek

Py

question whether the technique is optimal since the best lower boun&s to date
are of order n, Such lower bounds are not surprising since solving the
problem involves processing 2n inputs, each of which must be used at least
once.

The algebraic transform serving as the basis of the algoritim is the
weli-known fast Fourier transform, or FFT. The FFT traces its origins to the
German mathematicians Carl Runge and H. Kdnig in the 1920's. G. C. Danielson
and Cornelius Lanczos (1942) and Irving J. Good (1958) were other early
contributors. A fundamental paper by James W. Cooley and John W. Tukey in
1965 clarified the technique and led to its widespread use. The recursive

formulation of the algorithm described here is due to Allan Borodin and Ian

Munro. Several other researchers, including Charles M. Fiduccia, Ellis
Horowitz, John D. Lipson and Robert Moenck, have also made substantial con-
tributions in the area to provide an interesting and coherent view of the
relationship between evaluation, interpolation, and modular arithmetic. The
FFT, itself, is utilized in many fields of science and engineering, perhaps
most notably in signal processing applications such as communications, and
speech and image processing.

Polynomial multiplication finds a useful analog in the problem of forming
the product of two n-digit numbers. In fact the divide-and-conquer polynomial f
multiplication algorithm using O(n!'%®) operations, which we considered earlier,

is based on a technique described by the Russian mathematicians A. Karatsuba

and Yu. Ofman in 1962 for the digit product problem. In 1971 the German
mathematicians Arnold Schonhage and Volker Strassen applied the FFT to produce 7

an algorithm using O(n log n log log n) digitwise operations to multiply two

n-digit numbers.

3-19

e

Matrix Multiplication
One final problem we will investigate is that of multiplying two square

matrices. This problem and several related opérations arise frequently in
scientific applications of computers. An efficient algori%hm for matrix
multiplication can be used, for example, to obtain fast algorithms for in-
verting a matrix, finding its determinant, and solving systems of simulta-
neous linear equations.

Suppose we are given two n x n matrices 4 and B. We will denote the
n? elements of each of these matrices by ai.

d
between 1 and n. The result of multiplying these two matrices together is

and bij’ vhere 7 and j range

another n x n matrix C=4.-B, whose entries are given by the formula
n

€=)) aikbkj' Note that ¢ and J remain constant in the sum, while k
k

ranges over all n values.

The standard method for multiplying two matrices is to apply directly the
above formula n? times. Since the product aikbkj is used in the computation
of exsctly one entry, cij’ no overlapping of operations is possible. Observe
that n multiplications and n-1 additions are used to culculate each entry,
and thus a total of n?.n=1® multiplications and n2(n-1)=n-n> additions are
used overall.

Thus the standard algorithm uses 8 multiplications and Ut additions to
compute the product of two 2 x 2 matrices. In 1969 Volker Strassen of the
University of Zurich showed, surprisingly, that only 7 multiplications were
required. Strassen's scheme, which is given in Figure 14, trades one multi-
plication at the expense of 1k extra add/sub steps. The key point, however,
is that the method does not make use of the commutativity of muitiplication,
and hence can be used as the basis of a divide-and-conquer algorithm for

multiplying larger size matrices.

3-20

DI p ¥ R o

o

For example, suppose we want to find the product of two 4 x 4 matrices
A and B. Each of these matrices can be partitioned into four 2 x 2 submatrices,
as illustrated in Figure 15, Thus wve can regard both A and B as 2 x 2 matrices
whose entries are themselves 2 x 2 matrices. Applying Strassen's algorithm
recursively to obtain the product C=4.B, we first form 7 products of 2 x 2
matrices. Since each of these products can be calculated with 7 scalar multi-
plicatiéns, T-7=49 multiplications are used overall. This represents a con-
siderable improvement over the 43=64 multiplications employed in the standard
algorithm!

Let us now examine how Strassen's scheme can be applied to obtain a fast
method for multiplying two square matrices of any size n. TFor simplicity we
will assume that »n is a power of two, although this restriction is not essential.
To multiply two n x n matrices, we first partition both of the matrices into
four n/2 x n/2 submatrices. The product of the original m x n matrices can
be formed using Strassen's scheme by computing the product of T square matrices
of size n/2. To find these products we can apply the technique once again.

We now examine the efficiency of Strassen's algorithm. Let M(ﬁ) denote
the number of scalar multiplications used in computing the product of two
n x n matrices. Since this product can be reduced to the problem of forming
7 products of n/2 x n/2 matrices, we have M(n)=TM(n/2). The solution to this
recurrence relation, with initial condition M(1)=1, is M(n)=71082n=n1°837. This
result is easily obtained by back-substitution: M(n)=TM(n/2)=T2M(n/k)=...=

TkM(n/2k)=...=Tl°ghnM(l). Since log27’2.81, we have that Strassen's algorithm ;

P

uses n?°%! multiplications, instead of the usual n’, to multiply twon x n

cive

matrices.

R e &

What about the mmber of add/sub steps? For the 2 x 2 case, the standard
method uses only 4 additions, while Strassen’s scheme employs 18. Robert L.

Probert of the University of Saskatchewan showed in 1973 how to reduce this

3-21

number ta 15 and, moreover, proved that 15 edditions were necessary in any

scheme using only 7 multiplications. It appears that although Strassen's

method may save on multiplications, thig savings will be more than offset by
the extra cost of the seemingly large nusiber of additions. Surprisingly, we
shall see that for sufficiently large matrices the number of additions is
actually reduced!

Let A(n) denote the number of scalar additions performed when Strassen's
method is used to multiply two 7 x n matrices. Examination of the algorithm
reveals that this quantity is equal to the number of additions performed in
multiplying 7 matrices of size 7/2 plus the scalar additions used in forming
a (18 or 15) sums of n/2 x n/2 matrices. When adding two matrices we merely
add the corresponding pairs of elements using scaelar edditions. Hence the
recurrence relation describing the number of additions is A(n)=TA(n/2)+a(n/2)2.
The solution to this equation, with initial condition A(1)=0, is A(n)=a/3-
(n2°81 _n2), -

We have Just seen that both the number of multiplications and the number
of additions performed by Strassen's algorithm ‘are proportional to ni*%1,

For sufficiently large values of 7, the value of any function proportional to
n2°%! w111 be less than one growing as n’. Hence Strassen's slgoritim is
asymptotically faster than the standard one. But when does it begin to pay

to use Strassen's algorithm? Jacques Cohen and Martin Roth at Brandeis
University have shown that the crossover point is at about n=40. Their results
are based on timing experiments on an actual computer which take inte account
the added overhead incurred by more complex accessing of the data as well as g
the number of arithmetic operations performed.

The divide-and-conquer approach underlying Strassen's algorithm might be

used to generate even faster matrix mmltiplication algorithms. Any non-

:3=22

commtative scheme for finding the product of two m x m matrices with p
multiplications can serve as the basis of a method for multiplying matrices
of arbitrary size n with 0(n1i%8mP) operations. Thus if we could show how
to multiply 2 x 2 matrices with 6 scalar multiplications, we could take the
product of arbitrary size matrices with 0(n1°826)=0(n2'“) operations.
Unfortunately, John E. Hoperaft and Leslie R, Kerr at Cornell University
and Shmuel Winograd of IBM showed independently in 1971 that this is impossible.
To date the best method for the 3 x 3 case uses 23 multiplications, while 21
would be needed to better Strassen's result.

Viktor Pan, vorking at the IBM Thomag J. Watson Research Center, has taken
an entirely different approach to the matrix multiplication problem. In 1979
he exhibited an algorithm using only 0(n?'%}) operatioms, but with such s |
serious increase in the constant of proportionality that the method would be
impractical to implement. To date all that is known is that at least on the
order of n? operations are needed. This is not surprising in view of the fact
that the input consists of 2n2 matrix elements, and all of the data must be
used at least once. Researchers are actively trying to bridge the gap between

the best upper and lower bounds for this problem. é

(R T SR

323

PO

Bibliography
The Art of Computer Programming (Vol. 2, Seminumerical Algorithms). Domnald E.
Knuth. Addison-Wesley Publishing Co., 1969.

The Design and Analysis of Computer Algorithms. Alfred V. Aho, John E. Hopcroft
and Jeffrey D. Ullman. Addison-~Wesley Publishing Co., 19Th.

The Computetional Complexity of Algebraic and Numeric Problems. Allan Borodin
" and Ian Munro. American Elsevier Publishing Co., 1975.

Fundamentals of Computer Algorithms. Ellis Horowitz and Sarta) Sahni. Computer
Science Press, 1978.

3-24

A Rt

e o e ————— ——

List of Figures
1. Complex multiplication.

2. Straight-line algorithms.
3. Comparison of several methods for computing z".
L. Optimal power tree for %"

. Polynomial evaluation via usual and Horner's methods.

5
6. Modular method for evaluating a polynomial at several points.

Polynomial addition and subtraction.

—

8. Polynomial muiltiplication.
! 9. Synthetic division of polynomials.
10. Product of first degree polynomials via usual and shree multiplication methods.

11. Divide-and-conquer algorithm for polynomial multiplication.

. .

» l12. Algebraic transform for polynomial multiplication.
13. Complex roots of unity.

14. Strassen's.algorithm for multiplying 2 x 2 matrices.

e

15. Divide-and-conquer adaptation of Strassen's algorithm.

P e

L T emtis ' s

3-25

[U

S e ek -

Input data

Dl. a D2. b D3. ¢ Dk.

Computation steps

Sl. D1 xD3 =ac s1.

S2. D2 x Dk = bd s2.

S3. D1 x D4 = ad s3.

sh. D2 x D3 = be sh.

§5. 81 - 82 = ac-bd (real) s5.

\ S6. S3 + Sh = ad+be (imaginary) S6.
Classical method - sT.

s8.

is faster if 3M¥5Ath42A, or MVA:3.

3-26

D1 + D2 = a+b
D3 + Db = o+d

Sl x S2 = ge+ad+be+bd

Dl x D3 = ac

D2 x D4 = bd

Sk - 85 = ae-bd (real)

S3 - Sk = ad+be+bd

ST - 85 = ad+be (imaginary)

Three multiplication method

Figure 1. Two methods for forming the product of the complex numbers
(a+bi)(c+di)=(ac-bd)+(ad+bc)i. The classical method uses 4 multiplications
and 2 additions/subtractions, while the problem can also be solved with 3
multiplications and 5 additions. If M and A denote the time required to

perform a single multiplication and addition, respectively, the second method

:

s

|

§

s
%
x
%
:

Input data
1. x
Constants
Ci. 2
c2. 4
€3. 5
Computation steps
S1. D1 x D1 = x2
S§2. D1 x 81 = x°
S3. €2 x 81 = hx?
sk, C3 xDl = 5¢
S5. S2 + S3 = z+bx?

S6. S5 + sk = xi¥+hx?+sy

S7. S6 + Cl = xi+ux?+5042

Input data
Di. =

Constants
Ci. 1

c2. 2

Computation steps

S1. DL+ Cl

3

82. D1 + C2 = x+2
83. S1 x S1 = z2+2x+1

Sk. 82 x 53 = x+hx?+52+2

Figure 2. A straight-line algorithm consists of a series of computation

multiplications and 2 additions.

computing plz)=x’+kz2+52+42 are shown. The first applies the formula directly

using 4 multiplications and 3 additioms.

3-27

steps in which an arithmetic operation is applied to either the input data,

constants, or the results of prior computation steps. Two algorithms for

The second, which takes advantage

of the fact that p(z) can be factored as p(z)=(x+l)?(x+2), uses only 2 i

L vE

Input data
Dl. =
Computation steps

S1. D1 x Dl = x2

§2. 81 xDi =g’

83. s2xDl

[}
8

S21. S20 x D1 = 222

§22. S21 x D1 = x2?

Sruce force method

Figure 3. Comparison of several algoritmms for x?

s1.

s2.

Dl x D1 = z?
S1 x S1 = z*
S2 x Dl = £
s3 x 83 = z!?
sk xp1 2!
S5 x 85 = x2?
S6 x D1 = x?9

Binary method

s1.
s2.
s3.
sh.
s5.
6.
sT.

M U X Y N W W

DlxDl=2x° y

S1. D1 x D1 = x?

§1 x 81 =z* y?=z ls2, s1xn =zg*

52 x 52 = g* 22 S3. 82 x S1 = x°

S3 x 83 = 2'® (2%)? Sk, 53 x 83 = z!'°

Sk x 52 = 22° 25=!°%|55. sk x sk = 2?0

S5 x S1 = %2 y!'%.y [s6. S5 x 52 = z??

S6 x D1 = 2% y

Factor method

Power tree method

The brute force method uses 22

multiplications, the binary and factor methods 7, and the power tree only 6. In the

binary method, 23-(].011].)2 gives rise to the computation sequence SSXSXSX where S

means "square the result of the previous step” and X means "multiply the result of

the previous step by X".

In the factor method, z2’xr??.p=(z

y eyt O ym(y2)3.y; letting z=y?, 35=(2%)2.s.

3-28

2)11 g,

letting y=x?,

e

S

C . e e e

‘1 =t ua. t ~u. ° -a. ma. na. = Supynduwod ATSATSE3IINE SAIATOAUT ¥ Supndwod
203 @dcusnboes uoyyeOTTAIFITIM TeWUTW 3Y3 ¢ g1durexa I0g4 .:a 3o uopjeyndmos temiydo ue uy uUANSLY aq 03 sxanod aya

quagsadea u 0} 9913 SY3 JO 001 Y WO qyed Sy3 UO SIIQEMU I 9313 Y3 UT U I3WI0T 3I8IYY ¢ x aqndwod q

u
*00T > u 303 :B a3ndwod 09 paiynbax SUOTRBOTTAII TN JO Jaqunu TWiufl 343 Bual? 9ea3 Jemod Tewpydo °f aandtd

-

3-29

- T
)
|
|
Input data i
Dl. =z D2. ¢ D3. ¢ Dk. ¢ D5. ¢ ;
0 1 2] .
!
Computation steps @
2
Sl. D1 xD1l =z e te S1. DS =Dl = c,z
s2. Sl x D1 = z°) POVET® §2. 81 +Dh=cx o,
2
S3. D3 xDl = clz miltiply by S3. S2xDl = c,x +czz ;
Sk. Db x 81 = o g2} CoSfficlents sh. 83+ D3 = ¢ g e
S5. D5 x 82 = csx:’ §5. Sk xDl = c’z’wzzz-mlz
S6. S5 + Sh = ¢ 2%+c 2 S6. S5 + D2 = ¢ z'+c zitc xte :
3 2 sum 3 2 1 ‘,
= 3 2 _ i
S7. S6 + 83 = cax +cza: wlx terms Horner's method
S8. ST7.+ D2 = ¢ z'+ec 2%+4c x+c "
3 2 1] :
Usual method \
Figure 5. Two methods for evaluating & general third degree polynomial

p(z)waxawzxzmlmo. The usual method is to first compute the powers of

x: z2, z%; then multiply the powers by the appropriate coefficients:

cla:, czxz,csz’; and finally to sum the terms. Hormer's method uses repeated

factoring to evaluate p(zx) as ((csmz)ml)mo. When evaluating an nth

degree polynomial,.the usual method performs 2n-l1 multiplications and n

additions, while Horner's method employs only 7n operations of each type.

3-30

¢
3

-a L= T=-aq T-a ‘
1 2 3 L !

p(a)=r mod (:x:—a) p(a)=r mod (:z:-a) p(a3)=r mod (z-a) pla)sr mod (x-a)

2 3 L] 2 L]
\ / . f
i
!

m =(z-a)(z—a) mzs(z-as)(z-a“)
r = x) mod m r x) mod m
=p(=) mod m ,Pix) mod m, :
N ’
. , ;
s
\ /
~ s
\ ’ 4
\\ ,'
. .
A Y d
A /7

Figure 6. Tree showing the products and remsinders to be computed when evaluating
a polynomial p(x) of degree > 3 at the 4 points zsal,az,aa,a“ using the modular

transform method. First the products m, called "moduli", are built up in the

[N

manner shown moving from the top of the tree dovnward. Then the divisions of

L——

p(x) and the subsequent remainders indicated are computed in the reverse order, 3
going up the tree. (r=8 mod m means that r is the remainder when & is divided

by m.) The overall running time of the algorithm is driven by the time to

& nreas

symbolically multiply and divide polynomials.

3-31

e —-— 4 1

) H

!

|

sele2x? 43 sed+2x? +3 |

+ 228 -6zl -2 -6z -1)
Tz +2z7-6x +2 3 +2xc+6x +4

Figure 7. Polynomial addition and subtraction. Two polynomials are added
(or subtracted) by adding (or subtracting) the coefficients of the corresponding

powers of the variable x. The sum and difference of 5x3+222+3 and 2¢3-6z-1 are

shown.

3-32

BoAe ¢ AR MY S v

- —— -

|

Szd+222 +3
X 2z -6z -1

-Sz.2x? -3
-30z%-12x' 18z
10zS+42S 6x?

1028 +he5-302 1123 -222-182-3

Figure 8. Polynomial multiplication.

multiplicand
multiplier

(=1 times Sz +222+3)
(=62 times Sxzd+2x?+3)
(2z® times Sx'+2z2+3)

product

The classical way to take the product

of two polynomials is to multiply each term in the multiplier by the multiplicand

and then sum the results. The product of 523422243 and 22%-6z-1 is illustrated.

.l

b —— e

3-33

NIRRT -y

2 -1 quotient
divisor 32242) 62°~5x2492+3 dividend

6x®-222+hx (2x times 3x2-x+2)
—3r°+52+3 (623-522+9x+3 less 6x’»2x2+kx)
=302+ 2-2 (=1 times 3x?-2+2)
remainder 4x+5 (-322+5x+3 less -3xl+x-2)

Figure 9. Synthetic division of polynomials is similar to long division of
two integers. First the high order terms of the dividend and divisor are
divided, this result is multiplied by the entire divisor, and the resultant
product is subtracted from the entire dividend to yield a trial remainder.
(In the ex.mple shown, 3x? into 6z® is 2x, 2x times 3x?-x+2 is 6x3-2x?+hx,
and 6x’-522+92+3 less 6r’-2x2+ix yields a tridl remainder of -3x2+5x+3.)

The entire process is then repeated with the trial remainder in the role that
the dividend played initially. (3x? into -32? is -1, -1 times 3r?-a+2 is
~3r24p-2, 32245243 less -3r?+x-2 is Ux+5.) The procedure continues until a

trial remainder of degree less than the divisor is obtained.

peTIopyrvi: AL S

3-34

e ———————y e e =

p(z)=a z+a
1 0 p(z)qlz)=a b x*+(a b +a b)x +a b
q(z)=b z+b 11 10 01 00
1 0
Input data
Dl. a D2. a D3. b Dk,

1

Computation steps

s1.
s2.
s3.
sk,

85.

Figure 10.

polynomials.

D2 x Dh=g b
)
Dl x Dh=a b
10

D2 x D3=a b
01

0 1

{constant term)

S2 + 83=alb°+a°bl (coeff. of x)

Dl x D3=a b
11

Usual method

(coeff. of z?)

si1.
s2.
s3.
sk,

s6.
ST-

D2 x Db=a°bo (constant term)
Dl x D3=a!bl (coeff. of x?)
D1 + D2=a +a

1 0
D3 + Di=b +b

1 0
S3xSk=ab+wab+adbwabd

11 1 0 01 00
S5 -S2.b+ab+ab

10 31 00

s€ - Sl=a1bo+a°bl(coeff. of x)

Three multiplication method

Two algorithms for multiplying first degree (i.e., 2-coefficient)

The ususl method uses 4 scalar multiplications, while the product

can be formed with only 3 scalar multiplications by using extra additions and

subtractions.

T T

3-35

Y

oIt 5 436 44, O

1. Split each input polymomial having 4 coefficients into an upper and lower
half with 2 coefficients.

plz)=a x’+a x?+a zva qlz)=b z¥+b z14> z+d
) 2 1 e 3 2 1T e
=g (z) 22+t (x) =u(x)-z?+v{z)
vhére 8(.‘:)’(2’3"’02 where 1.4(.'t:)=bs:::+b2
t(x)=a x+va v(x)=b x+b
1 e 1o

2. Multiply the polynomials p(x) and q(:c) by forming 3 products of 2-coefficient
polynomials. Each of these products can be computed with 3 multiplications,
for a total of 3:3=9 scalar multiplications.

m =ty D =m =tv=d x%+d x+d

1 o 1 852 8s1 050

m =g u D =m -m -m =gv+tu=d x%+d z+d

2 1 3 2 1 1>2 151 1,0

m =(g+t) (u+v) D =m =su=d x*+d x+d

3 2 2 2,2 2517 250

vhere d =g b d =gb+abd d =aqab
250 0 o 150 20 0 2 2,0 2 2
d =ab+abd d =ab+ab+ab+abd d =ab+abd
051 10 01 1s1 30 21 12 03 251 32 23
d =ab d =ab+ab d =ab
0,2 11 1»2 31 13 252 3 3

3. The desired product p{x):q{xr) may be expressed as follows.
. =D z%+D x%+D
pl(z)qlx) ,E +D z 4D

=(d z2+d z+d Jz*+(d z%+d x+¢d Ix?+ld z?*+d z+d)
242 251 250 122 1517 1,0 0 0,1

s 22 0,0

z5+(d +d x*+d z2¥3%+(d +d Yx?+d o2+d
1 250 152 151 150 052 0s1

020

=d z%+d
252 2 ’

]
z¢ z8+¢ 23+ 2*+e 2d+e xP4e e
6 s " 3 2 T o
where ¢ =d =g p
o o 00

’0
ec=d =gb+ab
1 0s1 10 01

c=xd +d =ab+ab+ab
2 150 0,2 20 11 02
e=d =gb+ab+abd+ab
3 151 30 21 12 02
c=sd +d sab+ab+abd
8 250 1,2 31 22 13
ec=d =qb+ab

S 2,1 s 2 23

c=xd =g}
6 252 33

Figure 11. Divide-and-conquer polynomial multiplication algorithm applied to two
general L-coefficient(degree 3) polynmomials p(x) and q(x). Because two 2-coefficient
polynomials can be multiplied taking 3 products instead of the usual 4, p(x) and q(x)
can be split into two 2-coefficient polynomials and multiplied with 3°3=9 scalar
products. The classical method would have employed 16 products. In genersl the
divide-and-conquer approach leads to an algorithm using o(nt-$%) arithmetic
operations overall, while the usual method is O(n?).

3-36

A o

conventional
n coefficients arithmetic , an-1 coefficients
of p(x) and q(x=} 7 of plx)-q(x)

1

evaluation interpolation
values of p(x)and , value of p(x)-q(zx)
q{x) at 2n-1 points pairwise scalar ” at 2n-1 points

multiplication

Pigure 12. Algebraic transform for the product of two n-coefficient polynomials
p(xz)-q(x}. The classical algorithm obtains the coefficients of the product
polynomial directly using conventional arithmetic. In the transform method

p(xz) and q(x) are both evaluated at 2n-1 points, and their values at corresponding
points are multiplied together. This yields the value of p(x):q(x) at 2n-1 points.
The coefficients of the product polynomial are obtained via interpolation since

there is a unique polynomial with 2n-1 coefficients which fits the points.

3-37

£8 amam e e

WP VPR LU

vy

imaginary

axis

(1,4n/5)

(1,2m/5)

(1,67/5)

(1,8n/5)

real
axis

Figure 13. A complex number a+bi can be represented by a vector in a plane using

the real and imeginary parts of the number for Cartesian coordinates.

Alternatively,

a number can be represented on the same grid by giving its polar coordinates (r,0)

where re/27+5” and O=tan™> b/a. The polynomial 2 -1 has n roots, called the m-th

principal roots of unity. Geometrically, the vectors representing these numbers

slice the unit circle into n equal pie-shaped pieces.

the fifth roots of unity are shown.

3-38

The polar coordinates of

2 x 2 matrix-matrix product: A°Bm(
a a b b o c
1} 12 11 12 11 12
a a ° b b e e
21 22 21 22 21 22

Usual method: 8 mult, 4 add/sud

¢ ma b +a b e =a b #q b
11 11 11 12 21 12 11 12 12 22

aq b e =g b 4a b
21 21 11 22 21 ' 22 21 12 22 22

Strassen's method: 7 mult, 18 add/sub

m=(a -a)b +b) c wmem -mem
112 227 21 22 11 1 2 & &
m=(a +wa)b +b) c =m m
2 11 22 11 22 12 & 8
m=(a -a Yb +b) ¢ =m m
$ 11 21 11 12 21 6 7
m=(q +q)b e sm-m+m-m
» 11 12 22 22 2 3 s 7
msq (b -b)
5 11 12 22
m=a (b -b)
§ 22 21 11
m=(a +a)b
7 21 22 11

Figure 14. The usual method for multiplying two 2 x 2 matrices involves 8
multiplications and 4 additions. In 1969 Volker Strassen showed how the number

of multiplications could be reduced to 7 by using 18 additions/subtractions.

3-39

B . et

one

RO

4 x b matrix-matrix product: A-B=C

(@ a la a | i] e ¢ le ¢
11 12! 13 s 11 120 1y 1w 11 12) 13 18

a a ‘a a b b b b e ¢ le ¢
21 22§ 23 28| 21 22] 28 26 21 22! 23 2a

e arusenis o grdivna
a a la a c ¢ e ¢
31 32 33 s 31 32! 33 s 31 s2] 33
a a la a b b b b e e le e
a1 82 a3 ay 81 82} a3 ae 81 42] a3 s

o - - - - -

1. Partition 4,B8,C into four 2 x 2 submatrices.

l’A“ | Au- Bn! Bu cuE cu
y] [= — 2&
A_1a B | B R
2 22 21] 22 21} 22
| i] -
2. Apply Strassen's scheme to the submatrices.
M=(4 <A)(B +B) C =M +M -M +M
1 12 227 21 22 11 1 2 & 6
N = +, B +B c +M
Mz (Au Azz)(11 zz) “’Mn 5
M=(A -4 B +B) C212M +M
3 11 21 11 12 [7
M=(4 +A)B Cara2aM -M +M -M
v 11 12 22 2 3 8 7
M=A (B -B)
- 11 12 22
=4 B -
Ms Azz(21 Bll)
M=(4 +4)B
7 21 22 11

Figure 15. ‘Strassen's method can be extended to larger matrices using a divide-
. and-conquer strategy. In multiplying two 4 x 4 matrices, the 7 products of 2 x 2
matrices indicated are taken. Since each 2 x 2 matrix product can be formed with
7 scalar multiplications, only 7-7=k9 scalar products (instead of the usual 64)
are needed. In general, two n x n matrices can be multiplied using O(n?"*!)
arithmetic operations (both multiplications and additions/subtractions), instead

. of the usual O(n?), via this technique.

3-40

RS §-+ PR RS TE

ALGORITHMIC COMPLEXITY
Part 4

by
Lyle A. Anderson

SYSTEMATIC ANALYSIS OF ALGORITHMS

ABSTRACT

The limits and methods involved in the systematic analysis
of algorithms are explored. A review of the existing work
in this field is presented. A specific method of systematic
analysis is developed. The method consists of (1) the
translation of algorithm loop structures into recursive
subroutines and recursive subroutine references, and (2) the
semantic manipulation of expressions representing the joint
probability distribution function of the program variables.
A new delta function is introduced to describe the effects
of conditional statements on the joint probability density
function of the program variables., The method is applied to
several simple algorithms, sorting and searching algorithms,

and a tree insertion/deletion algorithm.

4-%

ot i

ACKNOWLEDGEMENT

Throughout the research and writing of this thesis, I

have been indebted to my major professor, Dr. Edmund A.

Lamagna, for his gquidance, encouragement, and support.

The research reported in this thesis was supported by

the U.S. Air Force Systems Command, Rome Air Development

Center, under contract F30602~79-C-0124. Additional support

was provided by Aquidneck Data Corporation.

AT .

h-11

TABLE OF CONTENTS

ABSTRACT. L] . . L] L] . . [} . o . [} [. . . C. . . . [} .

ACKNOWLEDGEMENT v v « o + o o o o o o o o o o o o o o

CHAPTER
1 INTRODUCTioN....-ooooooo-.'c-cﬂ

Statement of the Problem. . . . & ¢« ¢ « ¢ 4+ o

What Are Algorithms?, . . * o e o s

What is the Analysis of Algorithms? .

What is the Systematic Analysis of Algorithns?

What are the Limits of Systematic Analysis? .
What we Can DO L] L] L] L L] L] L] L] L] L L] * *® L]
WhatWeCannotDO...4.....-.'..-

Overview of the Thesis. . « « « ¢ ¢ v o« o & &

-

2 CURRENT STATE OF THE ART . o ¢ ¢ s o ¢ o o o ¢ o

Ad Hoc Procedures « . . « « o s« o o s o o o =
de Freitas and Lavelle e o o o
Aho, Hopcroft and Ullman

Horowitz and Sahni. . . .

Knuth's Analysis Techniques. . : . « « « o«
Systematic Approaches . . . e o s o s e-8
Electrical Network Analy:is. e o o o o o o
Wegbreit's Probability System.,
Ramshaw's Frequency System . . + « . ¢+ » »
Automatic Analyzers . .« « ¢« o s ¢ ¢ ¢ o o o o
Wegbreit®'s METRIC. « « ¢ ¢ o o ¢ o o o « o
Cohen & Zuckerman's EL/PL. « &+ ¢ « o « o o

3 SYNTAX DIRECTED TRANSLATION APPROACH«

Solving Recurrence Relations. . . « « « o« o &«
Translating Loops into Recursive Subroutines.
SimpleExGMPIQSooooouco.oao-_oo

Algorithm for n" e o o o

ODD/EVEN Print Example . . . ¢ ¢« ¢ ¢ o o« o
COINFLIP - o 3 L]] L] L] L[] [] L] [3 ® [] o)] L]
. PINDMX L3 ® ® L] L] [] > L] * L] * L]
The Problem of the Conditional Statement. . .

4-111

e o ¢ o .

i1
144

NAVE DN = =

[y
o

=
-0

0O NN b i et s b= s
EBUNDOIWWN =

N
"

[SECXN]
A\ -R--3-))

WWWwwh
N d Wk O

e v -

P 80 - Son L g TP 40

TABLE OF CONTENTS
{Continued)

4 DEALING WITH CONDITIONAL STATEMENTS.

Algorithms and Probability Distributions
LEAPFROG Revisited. . . ¢« ¢« ¢ « « &« & o«
COINFLIP Revisited.
FINDMAX Revisited .,

5 APPLICATION TO SORTING AND SEARCHING . « « «
"Oblivious"” Insertion Sort. « =
"Improved" Insertion Sort . . .
Binary Search

6 APPLICATION TO A MISCELLANEOUS PROBLEM . .

7 SUMMARY AND CONCLUSIONS.

REFERENCES. + « & &+ o ¢ o o o o « s o o« s o s s o @

APPENDIX A

LINE-BY-LINE ANALYSIS OF "OBLIVIOUS" INSERTION

4-1v

. . 38
.. 39
. . 44
. . 48
. . 51
.. 55
.. 55
L] L] 61
.. 68
L] L] 71
. L) 80
. . 82

SORT 84

n eame— - -~

— m——

CHAPTER 1
INTRODUCTION
This chapter is divided into two parts. In the first ;

part we will state and discuss the problem in computer

science that will be addressed in the rest of the thesis.

In the second part we will give an overview of the remaining

chapters of the thesis.

Statement of the Problem

This thesis is concerned with the systematic analysis

of algorithms. 1In order to understand what it is about, we

must answer these three questions:

l. What are algorithms?

2. What is the analysis of algorithms?

3. What is the systematic analysis of algorithms?
We will also be discussing a fourth question:

4. What are the limits of systematic analysis?
This will involve a short discussion of:

a. G;del's Theorem

b. The Halting Problem

c. Characteristics of the Completeness Problem

b-1

What are Algorithms?

Horowitz and Sahni (7) give this definition of an
algorithm: "Algorithm has come to refer to a precise method
useable by a computer for the solution of a problem." In
order to be considered an algorithm the method must have the
following characteristics:

1. A finite number of steps of one or more operations

2. Each operation must be definite, i.e. unambigously
defined as to what must be done

3. Each operation must be effective, i.e. a person with
pencil and paper or a Turing Machine must be able to
perform each operation in a finite amount of time

4, Produce at least one output

5. Accept zero or more inputs

6. Terminate after a finite number of operations

what is the Analysis of Algorithms?

Webster's New Collegiate Dictionary defines analysis as
"an examination of a complex, its elements, and their rela-
tions®. In the analysis of an algorithm we are interested
in the relationship between characteristics of the inputs
and the performance characteristics of the algorithm. Fore-
most among these characteristics is the execution time of
the algorithm; that is, the relationship between some sizing

parameter of the input data and the amount of time it takes

4-2

—

!

for the algorithm to get an answer. Other performance
parameters of interest include:
1. Number of comparisons in sorting/searching
algorithms
2. Number of scalar multiplications/divisions 1in
algebraic algorithms, such as matrix-matrix product
3. Number of input/output operations required for
problems dealing with database access
4. Size of the computer memory required to solve a
problem
All of these performance parameters have one thing in
common. They all can be transformed into the cost of com-
puting the answer. This is the reason that the analysis of
algorithms is so important. Aside from its intellectual and
recreational aspects, the economic aspects of the analysis
of algorithms are important to the users of computer sys-
tems. Especially in the computer-based industries, time is
money. An algorithm which takes twice as long to run may
not only cost twice as much to run, but may not even get
done in time to be useful. In other applications, accurate
predictions of probable running times are needed before a
system is actually built. These predictions can help make
overall cost and feasibility estimates for a proposed system
more accurate. In these kinds of applications the analysis
of algorithms is a software engineering tool. Other poten-

tial wuses are in automatic program synthesizers or in

4.3

S e - Z e S PR

T

e

compiler systems for very high-~level languages. (1]

In most cases the analysis of an algorithm consists of
determining the time behavior of the algorithm. This is not
the only measure of a program for which an analysis can be
performed. An algorithm can be analyzed by "instrumenting"
it, meaning that the values of the parameter of interest are
recorded in a counter variable which is added to the algo-
rithm, We often do this when analyzing for the time
behavior of an algorithm. For this reason the analysis of
different measures have a great deal in common with the ana-
lysis of time behavi%r. When we talk about the analysis of
an algorithm, we will only be concerned with its time

behavior unless otherwise stated.

What is the Systematic Analysis of Algorithms?

There are two basic ways to apprecach the analysis of
algorithms. The first way is to approach each alogrithm as
a separate new problem and to find the solution by appealing
to previous experience with similar problenms. The second
way is to make up general rules which apply to ™all"
algorithms and to apply these rules step by step to the
algorithm being studied.

The first way is very suitable to humans who come

equipped with a_qgreat deal of problem-solving and pattern-

recognition ability. It is not so well suited to the\

digital computers of today because they are not so equipped.

4-4

USRS

!

S A" FCTAEE

The more systematic approach of the second way to analyze
a;gorithms‘ is better suited to implementation by digital
computers., We shall say that the human approach involves ad
hoc procedures, and the computer approach involves

gystematic procedures.

What are the limits of Systematic Analysis?

The gross limits of systematic or automatic algorithm
analysis are known,

1. We know that systems can be built which will analyze
simple programs. [1,3,4]

2. We know that no completely automatic system or com-—
plete formal system can be constructed which can
analyze all algorithms. This fact is firmly estab-
lished by computability theory. [15]

In between the simple programs and all possible programs

there is a lot of ground which can be covered.

What We Can Do
Wegbreit (1] has built a system which can analyze
simple LISP programs automatically. Cohen and Zuckerman [3]
have built a system which greatly aids in the analysis of
algorithms written in an ALGOL-like programming language.
Their system helps the analyst with the details of the
analysis while requiring the analyst to provide the branch-

ing probabilities. wWegbreit [2] developed a formal system

C mee—— -

for the verification of program performance. His technique
can also be used to provide the branching probabilities
which are needed. Recently, Ramshaw [5] has shown that
'ere are problems with Wegbreit's probabilistic approach
and has developed a formal system which he calls the
Frequency System. There are problems with the Frequency
System, which Ramshaw points out in his thesis [5]. We will
show that some of the problems in the Frequency System can

be overcome,

What We Cannot Do
Douglas R. Hofstadter ([15] gives a beautiful exposition
of the nature of the whole question of computability aﬁd
decidability and the wide-ranging and unexpected topics upon
which it touches. The formal study of this subject springs
from G;del's Theorem which Hofstadter paraphrases:

"All consistent axiomatic formulations of number
theory include undecidable propositions.”

The undecidability of the Halting Problem is an example
of one such "undecidable proposition.” Stated in terms of a
Turing Machine, the Halting Problem is this:

Can one construct a Turing Machine which can decide

whether any other Turing Machine will halt for any

input, when given an input tape containing a

description of the other Turing Machine and its

input?

A negative answer to this question was given in 1937 by
Alan Turing. The argument which he used is called a diagonal

method. This method was discovered by Georg Cantor, the

4-6

founder of set theory. It involves feeding a hypothetical
Tpring Machine, which could decide whether any other Turing
Machine would halt for any input, a description of itself
which has been modified in a particularly diabolical manner.
Hofstadter's book [15] devotes much of its 740 pages to the
variety of topics to which this method may be applied.

It appears to us that undecidability and incompleteness
creep into formal systems when statements which can be
interpreted as being about the system itself are allowed.
In our discussions we will try to avoid these kinds of

questions, and thereby the completeness problem.

Overview of the Thesis

We have chosen to organize this thesis along the lines
which were taken in the development of the research upon
which it is based. We feel that the road taken is interest-
ing in and of itself. For this reason we will point out the
"dead-ends" which periodically blocked our path.

The first step which we took was a survey of the work
which had been done in this field. In Chapter 2, we will
discuss the current state of the art of algorithm analysis.
We will point out the areas where results are firmly estab-~
lished and the benefits of particular procedures that are
known. We will examine some of the recent advances both to
see how they work and to discover the kinds of problems

which they cannot solve.

4=7

bre v

A 4« sedias el $AOT- b

When this survey was completed we formulated a plan.
The approach which we used was to start from the program
statements themselves. We attempted to determine just how
much could be learned from manipulations of the programs
using various translation schema. We restricted ourselves
to programs written in a "structured" language. SPARKS,
developed by Horowitz and Sahni (7,9], was chosen as the
language for representing algorithms for the same reasons
they used it in their books,

Oour initial work revealed a transformation which proved
to be effective in analyzing several deterministic algo-
rithms in a straight-forward manner. Chapter 3 describes
this technique which involves the transformation of all
looping structures of a program into.a series of recursive
subroutines and recursive subroutine calls. Because this
process is designed to follow the syntax of the algorithm,
we refer to this as a "syntax-directed translation.” The
program characteristic to be analyzed is selected, and the
recursive program statements are transformed into recurrence
equations. The analysis is done by solving the recurrence
equations. This is not always easy (8. For this reason we
concerned ourselves with solving as well as setting up the
recursions.

In Chapter 3, we will examine some very simple, deter-
ministic algorithms (i.e. ones for which we know the inputs

exactly), then some very simple probabilistic algorithms

4-8

o l——

(i.e. ones where we only know some characteristics of the
inputs). While looking at these examples we will discover
the "problem of the conditional statement.® We started with
the FINDMAX algorithm which was analyzed both by Knuth (6]
and by Ramshaw [5]. We soon discovered that when the
statistical behdvior of algorithms is being analyzed, the
distribution from which the input data is drawn is an
important factor in the running time. While we could solve
the problems relating to distributions in algorithms such as
FINDMAX, we often found ourselves using information from
"outside the system".

Chapter 4 presents our formal approach for handling the
conditional statement. This approach is to use statements
about the distributions of program variables directly in the
analysis of the algorithms. We found that we had to study
the propagation of the distributions of the program vari-
ables through the program. As a result, we developed a
"calculus" for the behavior of the distributions themselves.
We will use this method to analyze the probabilistic
algorithms from Chapter 3.

We will then move on and apply the techniques to some
sorting and searching algorithms in Chapter 5, ;nd to a
miscellaneous problem in Chapter 6. Chapter 7 is a summary
of the work and an outline of possible future efforts.

Appendix A contains some details of the work discussed

in Chapter 5.

4-9

e

)

-—f‘ A i, Bt Gabmad OO RE R 34 ¢ 3 G v ¥ e e

p—

—y

CHAPTER 2

CURRENT STATE OF THE ART

In this chapter, we will discuss what is currently
known about the analysis of algorithms. The chapter is
divided into two sections. The first discusses what we call
ad hoc procedures, and the second discusses current syste-

matic approaches.

Ad Hoc Procedures

We are going to characterize an analysis technique as
"ad hoc® if we cannot see a way to easily remove the
*intuition" required to get the answers. The analysis proce-
dures which are so categorized are more suited for use by
humans than for the programming of a computer. They take
advantage of the rich background of experience which forms
the context of a human's ability to perform such analysis.
We will present the techniques of three sets of researchers
in order of increasing mathematical elegance of the tech-
niques. A method with a high degree of elegance is very
hard for the uninitiated to understand, but facilitates

quick and meaningful communication between the initiated.

-4=10

de Freitas and Lavelle

The most straight-forward, and hence the least elegant,
way to analyze an algorithm is to write dowh how long each
statement takes and to add up the result, S. L. de Freitas
and P. J. Lavelle describe "A Method for the Time Analysis
of Programs" [4]) which does the first part of this proce-
dure, Their method consists of superimposing timing data
about the assembly/machine code produced by a FORTRAN
program on the program source listing. The programmer may
then use the timing information to identify inefficient
portions of the program. The method does not calculate the
repetition counts for loops, but presents the time required
to perform one iteration of a loop. It therefore requires
the application of a;l the ad hoc analysis techniques we
will describe, but allows the analyst to come up with exact
answers to time performance questions. Even though it uses
a computer program, it can still be considered an ad hoc

technique.

Aho, Hopcroft and Ullman
Horowitz and Sahni
Aho, Hopcroft and Ullman (10] and Horowitz and Sahni
{7) describe a level of analysis which is one step removed
from the machine dependent technique described above. This

level deals with the statements of the algorithm as primji-

tive entities and largely ignores the variation in execution

4-11

[T NI

time between them. This type of analysis seeks order-of-
magnitude or "Big 0" performance data. In their excellent
introductory text [7), Horowitz and Sahni are primarily
interested in this kind of analysis. They introduce a
methodology which is very close to the high level "code" of
the algorithm to be anaiyzed. Aho, Hopcroft and Ullman (10]
give an excellent presentation of the various computer and

computability models which have been used.

Knuth's Analysis Techniques

It would be unfair to imply that Knuth's techniques are
all ad hoc. Nothing can be further from the truth. Donald
E. Knuth, perhaps more than anyone else, has established the
definitions and directior: of algorithmic analysis [6].
Jonassen and Knuth present an ad hoc tour de force in "A
Trivia: Algorithm Whose Analysis Isn't"™ [8). In the begin-
ning of his book [6], Knuth sets down the tools and techni-
ques which may be brought to bear during the analysis of an

algorithm. It is this grouping of techniques which we refer

to as "ad hoc":

Mathematical Induction

Sums and Products

Elementary Number Theory and Integer Functions
Permutations and Factorials

Binomial Coefficients

Harmonic Numbers

Generating Functions

Euler's Summation Formula

Combinatorics

WO -NNAAUd W -~

4-12

The application of these techniques requires a consid-
erable amount of intuition and experience in the analysis of
algorithms. The analyses which result are characterized by

a high degree of abstraction.

Systematic Approaches

We now begin a discussion of systematic approaches to
the analysis of algorithms. These methods are characterized
by the exposition of a "theory" which is applied consis-
tently in the analysis of algorithms. We will discuss three
manual approaches in order of increasing effectiveness, and
then discuss two automatic analyzers. The manual approaches
which we will discuss are:

1. Electrical Network Analysis

2. Wegbreit's Probability System

3. Ramshaw's Frequentistic System

For each one we will cover the theoretical basis of the
system, describe how it works, give an example, and discuss

the inherent weaknesses and their causes.

Electrical Network Analysis
Knuth mentions the applicability of Kirchhoff's Current
Law to the analysis of algorithms and applies it quite often
(6]. He also mentions that Kirchhoff's Voltage Law is not
applicable to the analysis of algorithms. An attempt to

introduce Kirchhoff's Voltage Law into the analysis of

4-13

!
|
|
)
;

v b . -

algorithms was proposed by Kodres ([13] and extended by
ngies. The following section closely follows Davies [14].
A generalization of Kirchhoff's Voltage_and Current Laws is
applied to the analysis of program or algorithm flowcharts
in the following way:
l. the number of executions of a statement corresponds
to the current in an electrical circuit
2. the execution time of a statement corresponds to the
resistance of a circuit element
3. the total time spent executing the statement
corresponds to the voltage across an electrical
circuit element
Kirchhoff's Current Law states the the sum of all
currents at any circuit node is zero. By assigning a "sign®
to the direction of flow in the flowchart, it is easy to
show that this is true for the number of executions in a
flowchart. The number of times into any node in the flow-
chart is equal to the number of times out of that node.
Kirchhoff's voltage law states that the sum of all voltage
drops and emf's around any circuit loop is =zero. The
analogy for the voltage law breaks down in the .case of
parallel connected sections in a flowchart. Here Kodres in-
troduced the idea of placing "current"™ sources in each
closed loop in the flowchart. The value of the current

source is equivalent to the number of times the 1loop is

executed.

4-14

b

-

o -

In the examples which follow, this notation applies:
P, is the fractional execution count for the true (t)
branctk of an if statement
T 1is a prefix that indicates that the quantity is an
execution time for a program block or element
(Examples are TA, TCf)
n is the number of executions of a loop body
The expressions which are given with each program
construct represent the equivalent "voltage"™ or total
execution time of the block in question.
The structured programming constructs involving closed

flowchart loops are translated as follows:

e if-then—-else is equivalent]

to a single statement l

1 |
block with a value of ! |
|
P (TC +TA) + (1~P.) (TC+TB) i T
I I | TC I |'TC
/\]] |]
/ N\ | - T
/ \ |
/ C \ t | l
\ / | P, |
\ / [/ i
\ / | | |
\/ | | |
| £ | T 7T T 71
| ! o 1 .) : : ™ : : e
I N L L
| .] | |
I 1 l
v T
 /
4-15.

R T e U

VL e, . NG W, sl S 7 i

® do-while is equivalent to

a single statement block

with a value of

f

n(TCt + TA) + TC

is equivalent to
a8 single statement block

with a value of

® do-untijl

m(TCf + TA) + TA + TC

T

4-16

e T

fa o
S A

The 1limit of this approach is clear and has been
pointed out by all who have written about the technique.
The difficult part of the analysis of algorithms is the
determination of the number of times a loop is executed or
in this analog, the value of the current source. However,
if one could solve this problem, then this technique
guarantees that one can get the solution to any sttuctﬁred

flowchart.

Wegbreit's Probability System

Wegbreit's systematic approach to the analysis of
algorithms was introduced in an article on "Verifying
Program Performance®™ [2]. The analysis of the ai.gorithm is a
natural by-product of proving that the program/algorithm is
correct, and a refinement of the use of well-ordered sets,
first suggested by Floyd. The algorithm is instrumented to
record the desired performance parameter. Then the appro-
priate probabilistic input assertions are made about vari-
able probability distributions and inductive assertions are
shown to hold at intermediate stages in the algorithm. When
one of the inductive assertions can be shown to be a loqp
invariant it can be manipulated into a statement about the
algorithm's performance. The important advance of
Wegbreit's probability system is that it sets out to
calculate the branching probabilities in order to determine

average computation time.

4-17

BT R A R N R

Pty

Ramshaw [5]) states that this method is based on the
ideas of Floyd and Hoare. it uses formal reasoning about
Predicates of the form Pr(P) = e, 0<e<l. Which means that
the probability that the predicate P is true is equal to the
real-valued expression e. Ramshaw has shown [5] that systems
of this form have problems with a very simple program which
he calls the Leapfrog Problem:

Leapfrog: if K = 0 then K <- K + 2 endif

We assume that K can take on the values of I and 0 with

equal probability, i.e.,
[Pr(K=0)=%] /\ [Pr(K=l)=%l

The output assertion which one would expect to get is:

| [Pr(K=1)=3] /\ [Pr(K=2)=3]
However, all that can be asserted using a Floyd—Hoare system
is:

Pr([K=1] \/ [K=2]) =1

This is not particularly informative or of much use in
subsequent portions of the program since all of the

information about the distribution of the input has been

lost.

Ramshaw's Frequentistic System
In his BPh.D. dissertation, Ramshaw [5] reformulates the
ideas about probabilistic assertions into what he calls
"frequentistic" assertions. In this way he "avoids the

rescalings that are associated with taking conditional

4-18

e

probabilities.™ Ramshaw's frequency "“is like probability in
every way except that it doesn't always have to add up to
one." He defines a frequentistic state as a collection of
deterministic states with their associated frequencies,
Atomic assertions are statements of the form Fr(P)=e, where
- P is a predicate and e is a real~valued expression.

Ramshaw applies his frequency system successfully to
the Leapfrog problem. |

Leapfrog: 1f K = 0 then K <~ K + 2 endif
His input assertion is:
[Fr(K=0)=%] VA [Fr(K=l)=%]

This means that the frequency associated with the state K=0
s % and the frequency associated with the state K=1 is also

. The total frequency associated with the variable K is

Nl po = e

+5 = 1.

So far we have followed Ramshaw's thesis closely. The
following is a slightly different interpretation of the
application of his method which arrives at the same answer.
We present it here in this way because it seems a little
more formal than his presentation.

The if-test on the predicéte { K=0 } conjoins the
branch atomic assertion [Fr(K#0) = 0] to the TRUE
out-branch. This is derived by setting the frequency of the
negation of the if-test predicate equal to zero. For the

FALSE out-branch, the branch atomic assertion is [Fr(K=0) =

0]. This simply states that the frequency with which the

4-19

O otk s reaa B S

v mm——

e

if-test predicate is true in the FALSE out-branch is zero!
Each atomic assertion in the input assertion is
individually resolved with the branch atomic assertion, in
the manner of theorem proving systems. If there is a
contradiction, then that conjunct of the input assertion is
dropped. In the TRUE branch we have:
[Fr(K=0)=3] /\ [Fr(K#0)=0]
which is logically consistent, but
[Fr(K=1)=31 /\ [Fr(K#0)=0]
is a contradiction and is dropped. 1In the FALSE branch we
have:
[Fr(K=0)=3] /\ [Fr(K=0)=0]
which is a contradiction, and
[Fr(k=1)=3] /\ [Fr(K=0)=0] = [Fr(K=1)=3] /\ [Fr(K#1)=0]
which is a valid assertion.
In the TRUE branch, the assignment statement chanqges
the deterministic states of K to have the value K+2.
[Fr(k=2)=3] /\ [Pr(K¢2)=0]
The assignment statement maps all of the frequencies of
the states of K in this branch into the frequency of the
state K+2.
| At the final join, the output assertion is the
conjunction of the two branch assertions, namely:
[Fr(k=2)=3) /\ [Fr(k#2)=0] /\ [Fr(K=1)=3] /\ [Fr(K#1)=0]
This statement contains the logical contradiction:

(Fr(K#£1)=0] /\ [Fr(K#2)=0]

4-20

. -

-

Unlike the case with the restriction at the if-test, a
contradiction at the join (which must -be between atomic
assertions from separate out-branches) is resolved by
conjoining each branch's contribution to a given
frequentistic state within a single predicate. In this
case:

[Fr(K#£1)=01 /\ [Fr(K#2)=0] ==> [Fr(K#l /\ K#2)=0].

We arrive at Ramshaw's output assertion:
[Fr(k=1)=3] /\ [Fr(K=2)=3] /\ [Fr(KFl /\ K#2)=0].

This result is a little more useful! It says that K is
either 1 or 2 and that it takes on either value with equal
probability.

Now, one would think that all this would lead to a very
powerful method. It does. "Ramshaw shows how to apply this
straight forward approach to the COINFLIP algorithm in
Chapter 5 of his thesis [5]. His analysis is very similar
to the one that we will give in Chapter 4. But, instead of
continuing to use the more straight-forward approach,
Ramshaw follows Kozen's semantics for probabilisitic
programs, applies measure theory, and shifts to a "theorem-
proving®™ approach. He uses the following rule of

consequence to prove theorems about the conditional

I=(AlP)S{B], |~[AlI-P]T(C]
—[(A}if P then S else T fi[B+C

This rule of consequence means that, if the truth of

statement:

predicate A given that P is true implies that B is true

4-21

P

after the execution of program section S, and if the truth
of predicate A given that P is false implies the truth of
predicate C after the execution of program section T, then
if A is true before the if statement involving P, S, and T,
then it follows that either B or C is true afterward.

Ramshaw's frequency system can handle some of the
programs which Wegbreit's can't, because Ramshaw avoids pro-
blems of renormalizing probabilities. But because Ramshaw
chose to use this rule of consequence for the if statement,
his system still can't handle the "useless test":

if R then nothing else nothing endif.

Ramshaw must include a special rule of consequence for
the "useless test"” (one that says that nothing happens).
This seems to be symptomatic of those formal systems of
algorithm analysis which have grown from the work in program
verification based on theorem proving.

We have just given a taste of Ramshaw's frequency
system. Readers who are interested in learning more about

it should see Ramshaw's dissertation [5].

Automatic Analyzers

We now turn our attention to the current state of

automatic analysis. We will look at two systems which have

been reported in the literature.

4-22

v

o

| .

T e
~-

Wegbreit's METRIC
METRIC [l) is a system, written in Interlisp, which is
able to analyze simple LISP programs and produce closed-form
expressions for the parameter of interest in terms of -the
size (in some sense) of the input. The analysis of a
program takes place in three distinct phases:

1. Assign a cost to each primitive operation. This
process continues as long as the procedure is not
recursive, Blocks of primitive operations are
assigned the cost of the sum of their individual
costs.

2. Analyze the recursive procedures. This phase ana-
lyzes how the recursion variables change from one
iteration to the next. A series of difference equa-
tions is generated by projecting this recursive
structure onto the set of integers.

3. Solve the difference equations. This phase finds a
closed-form expression for the difference equations.
Wegbreit has implemented solutions to these equa-
tions based on: direct summation, pattern matching,
elimination of variables, best-case/worst-case anal-
ysis, and differentiation of generating functions.

In Wegbreit's processing of conditional statements, he

assumes that all tests are independent. This is perhaps the
most serious flaw in the approach. Again the problem stems

from the difficulty in handling conditional probabilities.

SN

4-23

P T

L e A e

Cohen and Zuckerman's EL/PL

Evaluation Language/Programming Language (3] is a
system that consists of an ALGOL-like language for express-
ing algorithms (PL) and a language for analyzing the result-
ing algorithms (EL). The PL statements are compiled by the
PL compiler into a symbolic formula representing the time
for executing the program. This "object deck" is present to
the EL processor. The EL processor, in turn, provides a
human operator with the means to manipulate the symbolic
formula into answers. EL runs in an interactive mode. It
allows the operator to bind formal or numerical values to
the execution counts of loops and to assign formal or numer-—
ical values to the probabilities of boolean expressions.

Here, as with METRIC, the operator has to provide the
critical data on the branching probabilities. The branching
probabilities of different conditional statements are
assumed to be independent of each other. This seems to be

the most serious defect in the automatic analyzers to date.

4-24

e s

-

:

CHAPTER 3
SYNTAX DIRECTED TRANSLATION APPROACH

In this chapter, we will discuss our approach to the
systematic analysis of algorithms. The ptesentétion follows
the order in which the work actually progressed. Our
research was sparked by the arrival of Ramshaw's thesis [5].
It seemed to us, at the time, that the theorem-proving
approach was overly mathematical. There must be, we said, a
way to look at this which is more closely related to the
code and more understandable by programmers. Wegbreit's
article on METRIC [l] got us thinking about the utility of
translating program loops into recursive subroutines.

Loops make the analysis of algorithms interesting.
Without loops it's once through and done. Straight line
code is easy to analyze. When you add some branching state~
ments it gets a little harder; but it's the loops which make
an analysis really interesting. The first observation is

that there has been a lot of work done on solving recurrence

relations. I1f we can convert all of the different loop -

structures to recursive subroutine calls, then we can apply

the same techniques to attempt to analyze all kinds of

4-25

;
{
i
i
§
1
,g
:

b

loops. In fact, one can do exactly that, as Wegbreit [1]
ppints out. He also points out that if there are no
conditional branches in the loops, then there is an exact
solution to the recurrence relations. OQur procedure is
basically quite simple:

l. Convert all loops into recursive.suﬁroutine calls

2. Convert the recursive subroutine calls into

recurrence relations

3. Solve the recurrence relations

Solving Recurrence Relations

There are three basic methods for solving recurrence

relations:

l. Inspect the relation to see if you have seen it
before in another problem, or recognize a general
form

2. Try a few iterations to get the feel of the recur-
rence relationships and the way the relations
behave, then guess a closed-form answer, and prove
its correctness by induction

3. Apply one of the standard techniques to solve the
recurrence relation

Within these simple steps are contained a lot of art

and experience. G. S. Lueker in a recent tutorial “Some
Techniques for Solving Recurrences®™ [16] gives an excellent

introduction to these methods. Advanced techniques can be

4-26

found in Knuth (6], and especially Jonassen and Knuth [8].
We shall 1list some of the techniques mentioned by

Lueker [16].

l. Summing factors —- where one tries to manipulate the
recurrence relations by addition of expressions for
adjacent terms in the hope that the sum will
“telescope" into a few terms, one of which is the
nt term,

2. Characteristic equations ~- where the problem is
mapped into that of finding the roots of a
characteristic system of polynomial equations. This
approach works for linear recurrences with constant
coefficients.

3. Range transformation -~ where the unknown coeffic- é
ents in the recurrence relations are transformed by

Lo

some function which turns an unknown problem into a

known problem, or one that can be solved by another
technique.

R

4. Domain transformation —-- where the index value is 4

transformed to make the progression of values k

. additive instead of some other function. Once this :
is done, summing factors can often be used.

5. Generating functions -- where the problem is

transformed into another domain in a way similar to

h the transformation of a time-domain function into a

frequency-~domain function by a Fourier transform.

This method is particularly powerful for handlihg

probabilistic aspects of solutions.

Our work in this thesis, involved some very familiar

recurrences for which the answers were easily guessed,

4-27

e

.

et

Translating Loops into Recursive Subroutines

We will limit our discussion to algorithms expressed

using structured programming constructs only. This is not a

C e emm— -

pParticularly restrictive limitation since the structured |

programming constructs are all that is theoretically needed t

to describe any alogrithm. For this reason and the fact

ttat such programs are easier to maintain, most new

e

programming is being done using structured programming
methods.,

We will adopt SPARKS as the language for expressing :
algorithms. SPARKS was developed by Horowitz and Sahni in y

1976 [9] and sightly modified in 1978 [7].
We have developed a formal syntax-directed translation
schema for converting structured loop constructs into

recursive subroutines.

Given the input syntax of the FOR loop:

<label>: for <var> - <exp1> to <exp2> by <exp3> do
<statements with live variables>
repeat *

we get the recursive syntax:
start - <exp;>; Stop <~ <exp,>; incr <- <exp3>
{var> <~ start
call <label>(<var>,incr,stop,{ live variables }) 1
procedure <label>(var,incr,stop,{ live variables })
i1f SGN(incr) * (stop ~ var) > 0 then
<statements with live variables>
var €~ var + inc
call <label>(var,incr,stop,{ live variables })
endif
end <label> {

4-28

DR W

The 1live variables from <statements> are those
variables which are used or created in <statements> and have
a scope that extends outside of <statements>.

The procedure for converting DO WHILE 1loops to
recursive subroutine calls is quite similaf.

<label>: while < relational expression > do
‘ < statements with live variables >
repeat
~ The recursive syntax is:
call <label>({live variab.~s, relational variables})
procedure <label> ({live variakbles, relational variables})
if < relational expression > then
< statements with live variables >
call <label> ({ live variables,
relational variables })
end if
end <label>

Simple Examples

do while example (Algorithm for nn)

The following algorithm is a modification of one by

Horowitz and Sahni (10].

procedure N_to_the N
read Rl
R2 <~ 1; R3 4~ Rl
T1l: while R3 > 0 do
R2 €~ R2 * Rl; R3 - R3 - 1
repeat
print R2
end N_to_the N

4-29

FE 7

JE S TR

(BT RR V"

e

This procedure contains a single while loop which we
wish to analyze. The time behavior of this algorithm is
dominated by the number of times that the body of the while
loop is executed. We first translate the while loop into a
recursive subroutine. The algorithm becomes:

procedure N_to_the N
read Rl
R2 4~ 1; R3 <- Rl
call T1(R1, R2, R3)
print R2
end N_to_the N
procedure T1 (Rl, R2, R3)
if R3 > 0 then
R2 €- R2 * Rl1; R3 <~ R3 -~ 1
call Tl1(Rl, R2, R3)
end if
end Tl

Only program variable R3 has any effect on the course
of the recursion. Let i be the mathematical variable which
corresponds to R3, and T be the number of calls on the

subroutine. Then:

T 1,if1<0
T(i) = I
1 1 + T(i~1), if i > 0
The subroutine T1 is called from the main program with
i = Rl1., Therefore, the recursion is solved by:

0

T1(R1l) = z_ 1= RL+1
J=R1

The subroutine Tl is called one time more than the value of

Rl, which we expected.

4-30

ODD/EVEN Print Example
This example is a little more difficult. It involves
an if statement, but one which is completely’detezmined by
the starting number. ODD(I) is a built-in function which
returns True if its arqgument is odd, and False if the
argument is even.

procedure ODD_EVEN (N)

I €- N
while I > 1 do
Ta: print 'AAA'
if opD(I) then
I ¢~ I -3
else
I «- I + 1
end if
repeat

end ODD_EVEN
The recursive form of the program is:
procedure ODD_EVEN (N)
I «- N
call Ta(l)
end ODD_EVEN
procedure Ta (I)
if I > 1 then

print 'AAA’

if obD(I) then
I1 ¢~ 1 -3

else

. I -1 +1

end if

call Ta(I)

end if

end Ta

4-31

@
L2
3
3
3
k
1
§
M
b

Wegbreit [l1] points out the idea for the next step and
goes into it in greater detail than we shall here. He
states, "The essential idea is to map a recursive procedure
P into a new recursive procedure whose value is the cost of
P." We are interested in the number of times that AAA is
printed. The recurrence relation for it is given by:

T 0, if i <1
Ta(i) = : 1l + Ta(i-3), if i is odd
1 1+ Ta(i+1), if i is even

Starting with the case where i is odd, we have:

Ta(lo) =1 + Ta(10-3)
Now, i°-3 is even so we have (assuming io— 3>1)
Ta(zo) =1+1+ Ta(io- 3+1)= 2+ Ta(io— 2)
Note that io- 2 is alsc odd.
We now examine the case when io is even:
Ta(le) =1 + Ta(1e+ 1)
Now, ie+1 is odd, so we have
To{ig) =1+ 1+ T,(ig+ 1 -3) =2+ T, (i~ 2)
Since the recursions for the odd and even cases have been

transformed to eliminate the dependence on parity, we have

= the new recurrence :clations:
’ _ I_
Ta(i) =2 + Ta(x 2), if i>2
Ta(l) =]
Ta(O) =0

Whose solution is easily shown to be T, (i) = i.

I 4-32

COINFLIP
COINFLIP is an algorithm which Ramshaw [5) uses. Here
we translate it into SPARKS. The built-in function RANDOMht
returns a value of Heads or Tails with equal probability.

procedure COINFLIP !

I <0 |

while RANDOM . = T do '
Tc: print 'ok, so far!'; I 4€- 1 + 1

repeat 3

print I, ' times!t®
end COINFLIP

i The recursive version is: \
procedure. COINFLIP
I «<- 0
call Tc(1l)
print I,* timest!!'
end COINFLIP
f procedure Tc(I)
if RANDOMht = T then E
print 'ok, so far!'; I <~ I + 1
J call Tc(I)
end if
end Tc

The question "how many times will tails turn up in succes-
sion?" is equivalent to asking how many times will 'ok, so

far)' be printed out. We see that:

VIR s et il 116 £ 54 AT b 8 S e

T o, if RANDOM, . = H

T (i) = |

c =
L 1+ T (i+l), if RANDOM,, = T

where Tc is the number of times that the statement labeled

4-33

Tc in the original program is executed. If RANDOMht returns
H the first time that it is called, then the statement is
never executed. If RANDOMht always returns T, then the
program does not terminate. The in-between cases are the
interesting ones. What is the expected value of i, i.e. the
expected number of times that ‘'ok, so far' is printed? To
answer this question requires an investigation of the part

that probability plays in the conditional statement. We

will come back to this question later.

FINDMAX
This algorithm has been used as an example by several
authors ({5, 6, and 7]. it is the usual algorithm for
finding the maximum value of a set of numbers. This is the
first example which we have given in which the recursive
form of the algorithm is not obvious. For this reason we

will give the translation explicitly.

procedure FINDMAX(A, N, XMAX)
/* set XMAX to the maximum value in A(l:N), N>0. */
XMAX <- A(l)
Ll: for I <~ 2 to N do
if A(I) > XMAX then XMAX <- A(I); end if
repeat
end FINDMAX

4-34

L

e R

o T TRV

4-;qﬁ-lan'

e e —— -

Jrrg

e

R -y

The recursive version of this program is:
procedure FINDMAX(A, N, XMAX)
/* set XMAX to the maximum value in A(1:N), N>0. */
XMAX <€- A(l); I <~ 2
call L1(A, N, I, XMAX)
end FINDMAX
procedure L1(A, N, I, XMAX)
if I < N then
if A(I) > XMAX then

Tl: XMAX <- A(I); end if
I «<- I + 1
call L1(A, N, I, XMAX)
end if
end L1

The next step is to convert the recursive algorithm
into a recurrence relation for the number of times that
control passes Tl. In this case we are interested in the
number of times that a new maximum is found.

T 1+ T(A,n,i+1,A(i)) if A(i)>xmax
T(A, n, i, xmax) = |
L 0+ T(A,n,i+l,xmax) if A({)< xmax
with the boundary condition T(A, n, k, xmax) = 0 for kdn.

Given a known input array, A(l:n), this recurrence
relation completely determines the value of T. If this were
all that conuld be learned, then it would not be very useful.
The answer could just as well be determined by instrumenting
ti.e original algorithm with a test counter in the true
branch. In this case we observe that the true branch is

taken if the i~th element is the largest of the first i

elements. If P; is the probability that A(i) is the largest

4-35

o ORI Cn - ctmeme e o s

et e o e en e an L

- e —

WD

of i elements we have:

T(A,i) = p; + T(A,i+l)’
as a description of the average behavior of the algorithm.
At this point we have dropped the arguments of T which
return the "answer" so that we can concentrate on the time

behavior.

If the elements A(i) are drawn from a uniform

distribution, then p; = 1 and

T(A,1) = § + T(A,i+1)
T(A,i) = 0, for i>n

Since the initial value of i is 2, the solution to this

recursion is easily shown to be T(A,2) = Hn - 1, where Hn is

the nth harmonic number:
-1 1 1 1
H, = I+5+5+ 000 + o

While we were able to get the correct solution, this
way of analyzing the algorithm is not suited for automation.
The insight into the distribution of the data and its effect
on the probability that the branch would be taken requires

human~like understanding.

The Problem of the Conditional Statement

At this point, our approach has the same problem that
plagues the Electrical Network approach~-it works fine if
one knows the branching probabilities. It was at this point
in our research that we went back and studied the work of

Wegbreit and Ramshaw more closely. We noted the strengths

4-36

e e PO i .- T A N . I 'i
) e

and weaknesses which we described in Chapter 2. Knuth (5]
pProvides an analysis of FINDMAX which relies on some subtle
reasoning about left-to-right maxima among random permuta-
tions. Since we plan to teach a computer how to do this
analysis, we wanted to keep any real ”thihking" out of it
until absolutely necessary. In Wegbreit's and Ramshaw's ap-
proaches, the fact that the program variables of interest
are random variables and have distributions is recognized.
However, most of their analyses are performed by making
assertions about the frequencies or probabilities of these
distributions, and then proving theorems about the
assertions. The problem of the "“useless test"™ led us to
think that it might be useful to see what happened when one
followed the distributions themselves around the program.

At this point we had been concentrating so much on
understanding the true meaning of "“differentially disjoint
vanilla assertions”, the measure theory, and theorem proving
aspects of Ramshaw's frequency system [5], we had forgotten
that his treatment of COINFLIP dealt with the distributions
themselves, It was only after we had devised a major
portion of our approach that we realized the great similar-
ity between our's and Ramshaw's frequency system (as it
stood in4Chapter 5 of his thesis [5)). We then recognized
that we had continued down the path of following the dis-
tributions, while Ramshaw had turned to follow the path of

proving theorems about frequentistic assertions.

4-37

3

“'t.h

e e ——

CHAPTER 4
DEALING WITH CONDITIONAL STATEMENTS

In this chapter we introduce the central idea which, we
feel, is either a new idea or one which has been inadequate~
ly expressed in the past. The problem with the conditional
statement stems from the normalizations required when taking
probabilities, so why not, we reasoned, put off taking the
probabilities as long as possible? Ramshaw's thesis [5] was
a key to this. We observed his abandoning of his raw
frequencies in favor of asserting predicates about frequen-
cies. Another key factor in our choosing this direction was
Jonassen and Knuth's paper on "A Trivial Algorithm Whose
Analysis Isn't" [8). Here were these nice joint probability
distribution functions (p.d.f.) which appeared from "direct-
ly translating the algorithm into mathematical formalism."”
We set out to find the rules that had to have been used to
get to these simple recurrence relations. Because we took
so many wrong turns on our way to our final ideas, we will
abandon our historical presentation in favor of a more
expository one. We also have to abandon our initial assess-

ment that Ramshaw's approach was "too mathematical®. There

4-38

[

seems to be no way to avoid mathematics if one desires more

than the analysis of the simplest algorithms.

Algorithms and Probability Distributions

Each execution of an algorithm can be thought of as a
random experimental sample fruom the universe of possible
input data. We will be concerned with the behavior of the
probability distributions associated with the program vari-
ables during execution of the algorithm. These probability
distributions can be thought of as the repository of all the
information about possible execution histories for an algo-
rithm. We perform the analysis of an algorithm's behavior
by manipulating these distributions to find probabilites for
various conditions. We can then use this information in any
of the analysis techniques (e.g., those given in Chapters 2
and 3), which work for known branching probabilities.

We begin by associating a random variable with each

algorithm or program variable. We will follow Ramshaw [5]

and differentiate between the two by continuing to represent
algorithm variables by upper-case character sqrings and
representing the corresponding random variable by the same
characters in lower~case letters, For example, the random
variable xmax is associated with the program variable XMAX.
The value of the random variable x at any time {n the
execution of the algorithm is the value of the corresponding

algorithm variable at that time, Unlike Ramshaw, we have no

4-39

o v ML 4 Sk BT T

N L

prohibition about mixing program and mathematical variables

in the same expression. In fact this will be how we get

some of our answers.

We define the probability set function, Px(A), to be .

the probability that the program variable X is contained in
the set of possible values A, i.e., PX(A) = Pr(X € A), 1If

the set A is countable, we obtain the discrete probability

density function (p.d.f.), fx(x)z

[}

fy(x) = Pr(Xx € A) | A { some finite set of x's } (4-la)
If we let the set A be the set of all values of {X]x<X<x+dx}

we have the continuous probability density function, fx(x):

£4(X) = Pr(X € A) | A= { x < X< x+dx } (4-1b)

We will deal with the discrete type of random variable
in our formalism because of the fact that all values within
a computer can be mapped onto a finite set of integers. By
staying with discrete representations, we avoid the need for
the concept of "differential equality" which Ramshaw (5]
introduced to bridge the gap between continuous variables
and program equality expressions, We will develop a nota-
tion which is very close to the calculus of finite differ-
ences, Some of the rules which we will use will be derived
from analogous rules in continuous probability theory and
the calculus of continuous variables.

Equations (4-1) can be generalized to any finite number

of program variables by thinking of the X as a vector of the

n ordered program variables and x as an n dimensional random

4-40

vector. The random variables form a vector space in Rn and
fx(x) is a functional over that space.

The joint p.d.f. of the program variables describes the
state of the program up to a point in the execution of the
program. If we have a loop translated into a recursive
subroutine call, and if we can describe the joint p.d.f.
before the next recursive call in terms of the joint p.d.f.

i entering the body of the subroutine, then we have a recur-
. rence relation that we may be able to solve to get the joint
p.d.f. as a function of the number of calls on the subrou-
tine. This knowledge will allow us to calculate the branch-

) ing probabilities at any step in the process and hence

P SR R DU

complete the analysis of the algorithms begun in Chapter 3. ‘

Let us now examine the behavior of the joint p.d.f.

< E BT anaen calead

with various programming constructs. We begin with the

ASeh

conditional statement.

Theorem 1:

; ' Tf R is a deterministic logical relation of the program :
i variables then, the conditional statement
if R then ({ S, } else { S¢ } endif
a. Divides the joint p.d.f. entering the if statement
into two parts by
A l. setting to zero all terms of the joint p.d.f.
entering the then clause { S, } for which R is
FALSE, and
2. setting to zero all terms of the joint p.d.f.
entering the else clause { S¢ } for which R is
TRUE.
. 4-41
! — - -
! ' I
i . o o e— —— .- - —— - "‘ s ‘ .) s i

b. Forms the joint p.d.f. leaving the endif from the

algebraic sum of the joint p.d.f.s leaving the two
clauses,.

We will not present a formal proof, but will use

Theorem 1 as a rule and see how it handles situations for

which we have answers by other means.

The effect of the conditional statement on the joint
P.d.f. entering each clause can be represented in a compact
manner using a new type of delta function which we will
refer to as the Boolean delta. This new delta function is
closely related to the Kronecker and Dirac delta functions,
except that its domain is a Boolean space with possible
values True and False. The Boolean delta maps the Boolean
space into the numbers 0 and 1.

Definition

Let R be a deterministic logical relation of program vari-
ables, then the Boolean delta function

T 11if R is TRUE
SRy = |

1 0 if R is PALSE.
It is easy to see that the following properties hold:
d(R) * 8(-R) = 0
6(R) + 0(-R) = 1
8(R) = 1 - §(-R)
SR A s) =B * B(s)
8(R\/ s) = 8(r) + 8(s) - §(r) * B¢s)
With these properties one can find the Boolean delta of

any Boolean expression. We can now state a theorem about

the effects of the "useless test”™ on the joint p.d.f.

4-42

Pl i, - MRt .0 L

- e

- -

P S

Theorem 2

Let fy(x) be the joint p.d.f. of the n program variables
X)1XyseeerX at a point in an algorithm just prior to the
“useless test",

if R then nothing else nothing endif
where R is a deterministic logical relation on the program
variables X, and let gy (x) be the joint p.d.f. of the
program variables after the join at the endif, then gx(x) =
£y (x).
Proof:
Using Theorem 1 and the Boolean delta 6(R) we have the
augmented algorithm:

{ £4(x) }
if R
then { £g(x) * B(R))
nothing
else { £400 ° 8(-R))
nothing
endif { 9y (x) = £,(x)8(R) + £, (08 (-R) }.
{gy(x) = £,00 * (BR) + 8(-r))
{ gyg(x) = £,(x) }

‘ Q.E.D.
This discussion of the joint'p.d.f. of the program var-

iables is very close to Ramshaw's [5) frequentistic states.
We can show that Ramshéw's frequentistic assertions can be
derived from marginal or Jjoint p.d.f.s. We depart from
Ramshaw is that we will stay with the rules for the trans-~
formation of the joint p.d.f. by the algorithms instead of
moving to the next higher level of abstraction, i.e. rules
for the transformation of assertions about the marginal or
joint p.d.f.s. It was this abstraction wﬁlch destroyed the
ability of Ramshaw's system to handle the “useless test".

4-43 -
L]

b =

[P S R S S

36 £, 20 WAL s

——

© e — - A i bt aman T S Tes

S

LEAPFROG Revisited

In order to get some understanding of the effects of
simple assignment statements, let us look again at LEAPFROG.
Leapfrog: if K=0 then K<-K+2 endif

The input joint p.d.f. to Leapfrog is
1 1
£ () = 3 8(k=0) + 1 B(x=1)
which simply means that Pr(k=0) = %, and Pr(k=1l) = %.
The augmented program would be:
1f k=0 then { §(k=0) (30 (k=0)+38(k=1)}
{ 26(x=0))
16 -
K <= K+2 { 50((k-2)=0) }
{

30 (k=2)
[else] { 8(k#0) (38 (k=0)+38 (k=1)))
{ 38(k=1))
endif ($8(k=2) + 36(k=1) }

Which is exactly what we should get.

In handling the assignment statement, K <~ K+2, we

observed that it maps k as follows:

kK before | k after
. | .
. l .
-2 | 0
-1 | 1
0 | 2
1 | 3
2] 4
.] .
. | .
4-44

T et a7

In general, if we wish to keep the equations in terms
of the original variables, we have:

<Xl.,X2,..,xi,..,Xn) "'> <X1,X2,...,xi"‘C,...,xn>.

Next we will look again at the COINFLIP algorithm. To
do that we need some rules about the effects of a
conditional statement which contains a non-deterministic
part. We can easily transform a non-deterministic relation
into a non-deterministic assignment followed by a
deterministic conditional statement. For example:

if X = RANDOM

ht then { St } else { Sf } endif

becomes

Y <- RANDOMht .

if X=Y then { S } else { S¢ } endif.
Theorem 3
Let fx(x) be the Jjoin* p.d.f. of the n program variables
xl,xz,...,xn in the . .gorithm just prior to the conditional
statement

if R then { S, } else { Sf} endif

where R is a logical relation containing a finite number, m,
of random (possibly pseudo-random) functions RANDOij. Let
R' be derived from R by replacing each instance of RANDOMfj
with a reference to a new program variable Yj, then the fol-
lowing sequence of statements are equivalent to the original
statement:
= RANDOM

1 £l
Y2 = RANDOMf2
= RANDOMfm

m
if R' then | S¢ } else { S¢ } endif

4-45

e TR, e VT pe Eal s b semcee e

sens

——w“mibm LT T N

Theorem 4
Let f£,(x) be the joint p.d.f. of program variables
Xl,XZ,..-,Xn which have been defined, and let Y be a "new"
variable defined by the statement Y <~ RANDOMg, where
RANDOM generates a statistically independent random number
from distribution g(y), then the joint p.d.f. after this
statement, hz(z), is
h,(z) = £y (x) g ly)
where,
z

<x1,X2,.-.,Xn,y>
Z = <xl’x2’ L ,xn'Y>o

It is now time to examine the general assignment state-
ment between two program variables. We will use a memory-
to-register, register-to-memory model for the assignment
statement. This will allow us to have the statement X <- X
be a NOOP in the formalism without any special rules. We

introduce the notation

S~

———y .

i
to.mean the summation over all values of random variable Xg .
This is the discrete equivalent of the definite integral.
When it is applied to a function of X ¢ the result does not
depend on x,;, If this summation is done symbolically, all
occurences of x; are removed from the equation of the

result. Here are some properties of this summation which we

shall use later:

szi f(xi) = 1 , when f(xi) is a p.d.f.

4-46

e

AD=AL18 814 RHODL ISLAND UNIV KINGSTON DEPT OF COMPUTER SCIENCE =-ETC F/G 9/2
ALGORITHMIC COMPLEXITY. VOLUME I1.{U)
JUN 82 E A LAMAGNA: L J BASS: L A ANDERSON F30602=79=C-~0124
UNCLASSIFIED 81-3161-vOL=2 RADC~TR=82~152-vOL-2 NL

in (f(xi) 6(.xi=xj)) = f(xj)

in C£0x) Brxyexs)) = Fixg)

where F(xj) =Pr(Xea)ia={xg« xj } is the cumulative

probability density function (c.p.d.f.) for f. Note that in
the case of discrete random variables we usually have to
worry about whether or not the c.p.d.f. is defined to

include X5 or whether it is just "up to" «x. In the con-

J.
tinuous representation we would not have to worry about this

because the two are equivalent,

Theorem 5
Let fx(x) be the joint p.d.f. of the n program variables
Xl,XZI---,Xn just before the program statement

xi 6" x.

]
Then the joint p.d.f. after this assignment statement is

gx(x) = E:xi fx(x) 6(xi=t)) 6(r=xj)

The application of 6(xi=r) within the summation takes

care of the case when Xy is the same variable as xj. In the

cases where X4 and xj are different variables, the rule

reduces to:

Iy (x) = (szi fx(x)) 6(xi=xj)
For an example we will look at a simple program which
interchanges the contents of two variables X1 and x2 using a

third variable X, as temporary storage. The augmented

3
program goes like this:

4-47

. e e e

{ fx(xl.xz.x3) qx(xl.xz)é(x3=0) }

x3 < x1 { fx(xl,xz,x3) = gx(xl,x2)6(x3=xl) }
xl <- x2 { fx(xl,xz,x3) = gx(x3,x2)6(xl=x2) }
x2 <= Xy { fx(xl,xz,x3) = gx(x3,xl)6(x2=x3) }

{ By (x)0%X5,%q) = gx(xz,xl)6(x3=x2) }
Note that we need not have assumed that x3 initially
contained 0. We could have started with the general joint
p.d.f.:

Ex(xprxaeX3) = 9y (X)s%50%3)

Then the first assignment would have resulted in :

x3 <= xl { fx(xllx21x3) (Zx3 9)'(()(1,82,)(3)) 6(x1=x3) }

gx(xlixz) 6(X1=X3)
= 2—x3 Ix (X r¥Xp0%3)

The remainder of the example would be as before.

where gx(xl,xz)

COINFLIP Revisited

We now have all the tools to handle COINFLIP and get the
real answer in a systematic way. The annotated main program
is:

procedure COINFLIP

I < 0 { £,(1) = 8i=0))
call TC(I) { £.(1) = g(i) }
print i,' times.' { £.(i) = g(i) }

The problem is to determine what the function g(i)
looks 1like. This is, of course, determined@ by the sub-

routine TC. We now proceed to the analysis of TC. Assume

4-48

that the p.d.f. entering TC is fI(i).

p;ocedure TC(I)

Y <~ RANDOM, (£, (SBiy=m) + 3B(y=m))
if Y = T then {£,.(4) ° %6(y=T) }

print 'OK, so far!'

L1 +1 {£0i-1 * y=m)

call TC(I) { g;(i) }
end if

{gtti) + £,.(0) ° 2h(y=m))
end TC

Where gi(i) represents the value of I returned by the recur-
sive call to TC. Now, the distribution { £ (i-1) 30(y=1) }
is presented to the next call of TC(I), so we must have in
general:
£.(1) = £,(1-1) © 30(y=m)

Since the variable Y is local to TC(I), it must be
eliminated from the joint p.d.f. that is returned. We will
refer tc this process as "killing" a variable. This is done

by finding the marginal p.d.f. of I with respect to y:

£,(0) = z:y £,(1-1) 30(y=1) = 3£, (i-1)
Note that if Y were to be treated as a global variable, this
step would take place as part of the RANDOM,, assignment
statement. The initial condition from the main program is
fI(i) = 6(i=0), so the digtribution for the first recursive

call is:

1 oy o L€iie
£, (1) = 56(1-1 = 0) 26(1 1)

4-49

AL Pkt

e

and in general we see that
£,(1) = (37 b(i=y)
where j is the number of times that ‘'OK, so far!' has been

printed out. This distribution represents the part of the

. distribution which is “caught in the loop". Each time some

of the distribution "escapes™. This corresponds to the
chance that Heads will turn up at any time. For each value
of j, the joint p.d.f. that "escapes" is (%)36(i=j)%6(y=ﬂ),

this joins the rest at the end if to give the final answer:

g(i) =

Nl

Zj (%)ja(i=j)l j e { 0, 1, 2’ LI I }

We note that this is in fact a normalized p.d.f. What is

the expected value of I?

E(I)=§:i 34 z:j 3)38i=5) 1,5el 0,1, 2, .o}

= %(0°1 + 1’% + 2'(%)2 + ceeesenes
by distributing and regrouping each fraction we get:
= %(% + % + % + %g + ceeoescnes
I Y S ST S ST O
= %(1+ % + % + ceecenes
= 3(2)=1

If we had performed this analysis on Ramshaw's [5]

version of COINFLIP,
C <~ 0;

loop X <- RANDOM, , ; C 4« C + 1; while X=T repeat
we would have gotten the final joint p.d.f.:

8 (x=n) E:j (3)38¢c=3) + 3 e 1 1,2,3,...)

4-50

. et v e

This contains all of the information that is in Ramshaw's
output assertion for the same problem [5, p.78]
[Fr(C<1)=0] A\[Fr(X=T)=0]/\ /\ [Fr(C=c,X=H) = 2"

/ \
c2>1

°

FINDMAX Revisited

We will again follow Ramshaw [5, p.81) and use a
slightly different form of the FINDMAX program than was
presented in Chapter 3. We will replace the input array
A(I) of random variables by repeated calls to a random
number generator. This simplifies the notation somewhat
without sacrificing generality. We will return to the array
notation when we deal with the sorting algorithms. The
program is instrumented to record the number of times a new
maximum is selected. The modified and annotated proaram in
recursive form is:

procedure FINDMAX(N,M)
C < 0; I ¢ 2 §(c=0) B(i=2) }
M <~ RANDOM, 8(c=0) 8(i=2) £(m) }
call LoorPl (N,M,C,1) { g(n,m,c,i) }
end FINDMAX
procedure LOOP1 (N,M,C,I) { h(n,m,c,i) }
if I < N then

a—

h(n,m,c,i) 6(i$n) }

T <~ RANDOM, h(n,m,c,i) 8(ign) £(t) }

P N o B e

1f T>M then h(n,m,c,i) 8(i<n) £(t) d(t>m) }
CeC+1 hin,m,c-1,138 (i<n) £(£) 8 (t>m))
Mé T

(Sem=t) (2 h(n,me-1, D)0 (e>m)8icmE(t) 3
m

451

o P o a S s s

” AP S i 2

— e i

e cme—— oo

lelse] { h(n,m,c,i) (i<n) £(t) 8 (t<m) }
end if

{ dim=t) (z: h(n,m,c-1,)0 (e>m)) Seicny £ty
m

+ h(n,m,c,i) §(i<n) £(t) S(tcm) }
I <~ 1 +1

(8(1-1¢n) (Bm=t) 0_ h(n,m,c-1,1-1)6 (£>m)) £(t)
m

+ h(n,m,c,i-1) £(t) d(t<m) ; }
call LOOPL (N,M,C,I)
{ g(m,n,c,i) }
end if
{ h(n,m,c,1)8(i>n) + g(m,n,c,i) }
Note that all of the joint p.d.f. is caught in the loop

or recursive calls until I 1is incremented past N. The
recu: .‘on which we must solve is:

-
h(n,m,c,i) = {d(i-1<n) (B(m=t) > h(n,m,c-1,1-1)8(t>m)) £(t)
m

+ h(n,m,c,i-1) £(t) O(t<m)) }

T is a local variable to LOOPl1 and not sent outside that
subroutine so we must “kill" it,

h(n,m,c,i) = 9_ (8(i-1<n) (Sm=t) (L h(n,m,c=1,1-18 (e>m) £(t)
t m

+ h(n,m,c,i-1) £(t) §(t<m)) }
At first glance, this recursion doesn't look very useful.

To get a handle on what is going on, we will follow the
first few iterations of the program. In duirng so we will
drop the termination delta function. The initial call is
made with

h(n,m,c,i, = 8(c=0)"£(m) "8 (i=2)

4-52.

e N

-t e

L e — e e aees T

Applying the rules we find that
h(n,m,c-1,i-1) = 6(c=1)°f(m)-6(i=3)
and

h(n,m,c,i-1) = 0(c=0)"£(m) *d(i=3)

‘so we have

h(n,m,c,i) =

5

§(i=3) E:t { 6(c=l)'6(m=t)‘(k~m £(m) "0 (t>m)) "£(t)
+ 8(c=0)"£(m) "£(t) *Bt<m) }

-

h(n,m,c,i) = 9(i=3) = 6(c=1)'6(m=t)‘(;(t))'f(t)

+ B(c=0) £(m).£(t) D (tcm) }

h(n,m,c,i) = 8(i=3) { O(c=l)*F(m)"€(m) + §(c=0) "£(m) F(m) }
We can rewrite this into an equivalent form
hin,m,c,i) = §(i=3) { 2°F(m)"£(m) (3B(c=1) + L8(c=0)) }
If we crank through another iteration we get:
h(n,m,c,i) =

§(i=ay { 3°F2(m) *£(m * (3b(c=2) + LB(c=1) + LB(c=0))}
The third time around we get:
h(n,m,c,i) =

8(1=5) (48> (m) £ (m) (330 (c=3)+30 (c=2) +338 (c=1) 438 (c=0))
Each time that we cycle through the equations we find that
the joint p.d.f. is a product of the marginal p.d.f.s of the
individual variables. We have factored the coefficients to
normalize the marginal p.d.f.s with respect to m and c.
Wwhen the joint p.d.f. of a set of random variables can be

written as the product of their respective marginal p.d.f.s,

A=53

Rt ARSI St ad mian Wi L e n

e

et G S

C o R - Tl e et T

then the variables are said to be stochastically indepen-
dent. This is a very important thing for us to confirm in
this case. It tells us that we have not affected the
distribution of .the maximum value by instrumenting the
program. The stochastic independence also simplifies the
solution of the recurrence relations. Because of it we can
set up a recursion for each variable separately by following
the marginal p.d.f. for each variable. We change the
induction variable from i to j = i - 1 so that the formulas
will look more familiar.

Ey(m) g = E%T F(m) £y(m)4_,
and

[

- - j~1
fole)y = 3 fole-l)y) + 55 felery,

The recursion for f (m) gives the final distribution of
£y(m) = n F""L(m) "€ (m)
which is the answer given by Hogg (12]. The recursion for

fc(c) is the same as Knuth's [6] and Ramshaw's [5].

4-54

—

CHAPTER 5

APPLICATION TO SORTING AND SEARCHING

We now turn our attention to the further application of
our approach to sorting and searching algorithms. We will
look at three such algorithms: The "oblivious™ Insertion
(Bubble) Sort, the "improved"™ Insertion Sort, and Binary

Search.

"Oblivious" Insertion Sort

Insertion Sort was used by Wegbreit (2] as the example
for verifying program performance. He used the "improved"”
version which has an exit in the inner loop after each
candidate element is properly positioned. The "oblivious"
version of this program does not have this exit. It con~
tinues to compare the element being inserted to all of the
elements in the sorted sublist, While it is an inefficient
software algorithm, this version of the algorithm is of
interest because it can be realized using a network of com~

parators (i.e. using hardware logic circuits).

4-55

..

LY VORI

s inmodon Thr 3

1
v s T

v -

= o 0 9 & W

procedure INSERTION SORT (B , N)
real B(1l:N)
OUTER:
for J €~ 1 to N-1 do
INNER:
for I <~ J to 1 by -1 do
if B(I) > B(I+1l) then
EXCHANGE (B(I), B(1+l1))
endif ,
repeat
repeat
end INSERTION SORT

The first step is to convert the loops to recursive

subroutine calls. We will number the statements so that

they may be related back to the original program. We will

also

insert a counter variable, Y, to keep track of the

number of times an EXCHANGE takes place.

1

2

3a

3b
10

- 3c
. 34
4a
4b
9a
9b
9¢
9d

procedure INSERTION SORT (B , N)
real B(1l:N)
global integer Y
J €~ 1; Y <€~ 0
call OUTER(J, N~1, B)
end INSERTION SORT.

procedure OUTER(J, LIM, B)
if LIM - J > 0 then

I €~ J
call INNER(I, B)
J €«-J +1
call OUTER(J, LIM, B)
endif
end OUTER

4-56

4c procedure INNER(I, B)

4d if I > 1 then

5 if B(I) > B(I+1l) then

6 EXCHANGE (B(I), B(I+l))
6a Y €«¢- Y + 1

7 endif

8a I ¢~ 1 -1

8b call INNER (I, B)

8c endif

8d end INNER

Appendix A contains a detailed, line~by-line tracing of
the joint p.d.f. which is used in an "average case"
analysis. From it we can develop the form which the distri-
bution of a "sorted" list takes. Specifically, we have:

8(by>by_)" B(b,>b) £t (b by, T sby),

N-1)
where f'(bl,bz,...,bN) is some transformation of the initial
joint p.d.f. The leading product of Anderson deltas con-
tains the information that the list is sorted. This may
seem like a simple thing, but remember that having started
with an algorithm and the assertion that it “sorts a list",

we have arrived at a form of joint p.d.f. which means "the

list is sorted™. If we were to give an automatic analyzer

an algorithm, and if it came up with a final joint p.d.f.

that had this form, the automatic analyzer could say, "this
algorithm sorts a list."™ Conversely, if the analysis does
not result in a joint p.d.f. of this form then the analyzer
can say, "this algorithm does not sort a list."

When analyzing sorting algorithms, three different

4-57

on-

“,

types of input distributions are usually used. These
represent the initally sorted list, the initially reverse
sorted list, and the initially "random" list. These three
sometimes cover the best, worst, and average case execution
times, although not necessarily in that order. In some more
exotic algorithms, there is a more complicated input distri-
bution which leads tc the best or worst case behavior. Our
approach can be used to determine the best and worst case
distributions, although we will not dwell on this. The best
case performance for Insertion Sort comes when the EXCHANGE
never takes place, and the worst case performance comes when
the exchange always takes place.

The work shown in Appendix A, for the average case
analysis, suggests the induction hypothesis that if you give
INNER, at its call from OQUTER, the distribution

8 (i=3) "6 (3<n "8 (3=K) "
k1°B(b by 1) " "6(by2by) "E(by) “£(b,) " E(by),
INNER returns the distribution
8(1=0) *b(3¢n) B (3=k) *

(k+1)1*8(b, , 1 5b,) """ (b,2b,) "£(by) "£(b,) " "£(by).

h

k+12
In other words, INNER inserts the k+lt element into the
sorted 1list of the first k elements. We are therefore
justified in picking as the general form for a joint p.d.f.
going into INNER

§ (i=m) *6(m<3) 8 (3¢n)y

6(bj2_b }** 8 (b,2b)) "E' (YD) 4Dyseeasbiseaniby).

j-1 j

4-58

T T S B

Rather than doing that, let us start with a completely

general joint p.d.f. g(j,i,n,y,bl,bz,...,bN) after 4c.

After 44, in the true branch:
§(i21)°g(3,0,n,y,b) sbyseeerby)
Sent to 8c, is ;he false branch:
§(i=0)"g(3,i,n,¥,b)sbysesusby)
After 5, in the true branch: '
8(ix1)"8(b;>b; 1) ati,iin,y,by by, sby)
Sent to 7, in the false branch is:
§(i21) *8(by,,2b;) "g(3,1,n,y,by ,byyeeeiby)

i+l=-
After 6,

8(i>1) "8(by, >b;) "3, 1,n,¥eb byseesby ysbyseesby)

After 6a,
§ci>1) b

After 7,

8(122)"8(b,,12b,)"((3, 4,n,y=1,b) s byseerby i ibyaeasby)

+ g(jrirnrY'blrbzno-rbirbi+lroorbu))

After Ba,
§(1+131) "8 (b, ,3b;,)"

(g(j'i+l'n'y—l'bl'b2'.."bi+2'bi+l""bN)

4+ g(3,441,n,y,b)sbyreesby, 1 ey oreiby))

We have arrived at the recursive calling of INNER, so

we must have:
g(jrirn:Y'blvbz....,bN)

8(1+151)*8(b 20)"
(g(jli+lrnly—llbllbzl"lbi+zlbi+ll"IbN)
+ g(j,i+1,n,y,b1,b2,..,bi+1,bi+2,..,bN))

4-59

i+1>bi).g(j'i'“'Y"l'bl'bZ'"'bi+1'bi""bN)

> - -

LAPVATPAE 0y

From the other parts of the algorithm, we get the
boundary conditions
§(5<n) 0 (ig3)
and the initial condition
g(j,i,n,y,bl,bz,...,bN) =
6(i=j)'6(n=N)'h(y)'6(bj_>_bj_1)) e
assuming that f is symmetric with respect to interchange of

...6(b22b1) .f(bllbleC‘lb

variables,

Note that this is a "backward" recursion, i.e. we start
with i=j and move backward to the desired answer for i=0.
Once we have solved the recursive relationship for INNER
(based on i), we can use that to solve the recursive rela-
tion for OUTER (based on j), which gives the final answer
for the joint p.d.f. Doing this in the general case cannot
result in a closed form answer in the usual sense, It is
possible to "write down" the general solution for any given
N, but the equation would be equivalent to the one that we
would get if we were to "unwind" the loops into straight
line code. In order to get really useful results, we need
to select the form of the joint p.d.f. for the unsorted
list.

Once one has selected an initial joint p.d.f., and
solved the recursion relations, one has a joint p.d.f. which
represents the distributions of the variables at the termin-
ation of the algorithm., The distribution of the counter

variable is then isolated by summation (integration) over

4-60

PUNpRe SRS LA

all the other variables. This marginal p.d.f. is then used
to find the expected value, variance, and other statistics

in the usual manner.

"Improved" Insertion Sort

The relative performance of the "oblivious™ insertion
sort can be improved, by noting that the portion of the
joint p.d.f. that fails the test at statement 5, is already
in sorted order. We can exit from the INNER loop at this
point without affecting the algorithm's ability to sort.
Such "obvious" improvements often have hidden side effects,
but our method will let us prove that the modified algorithm
still sorts. It also turns out that the distribution of I
will give a direct indication of the algorithm's
performance. For this reason, we will delete the counter

variable Y.

1 procedure INSERTION SORT (B , N)
2 real B(1l:N)
3 OUTER:
for J <~ 1 to N-1 do

4 INNER:

for I «~ J to 1 by -1 do
5 if B(I) > B(I+l) then
6 EXCHANGE (B(I), B(I+l))
6a else exit /* This is the change */

endif

8 repeat
9 repeat

10 end INSERTION SORT

4-61

i . 2 e

D A

=

| The recursive equivalent is:
L procedure INSERTION SORT (B , N)
2 real B(1l:N)
3a J €- 1
10 end INSERTION SORT
3¢ procedure OUTER(J, LIM, B)
3d if LIM -~ J > 0 then
4a I ¢~ J
4b call INNER(I, B)
Y 9a J €~ J + 1
9b call OUTER(J, LIM, B)
9¢c endif
9d end OUTER
L 4c procedure INNER(I, B)
4d if I > 1 then
if B(I) > B(I+l) then
EXCHANGE (B(I), B(I+l1))
6a else return
7 endif
8a I <=1 -1
8b call INNER (I, B)
P 8c endif
8d end INNER
~ The return in the recursive program is equivalent to
* the exit in the loop version. Everything works the same as
before up to statement 6a. At this point, the joint p.d.f.
from the false branch "escapes"™ from INNER. We will pick up
the analysis at that point on the J=1 iteration,
5 This is the first test involving the data itself. This
E . statement splits the joint p.d.f. on the basis of the
! values of B(I) and B(I+l).
4-62
S - . - - S —

6a

8a

8b

In the true branch:
8¢i21) *61=3) "b(i<n) “8(5=1) "Bb>b,) °
£(b;) "E(b,y) """ £(by)
In the false branch:
8(i21) *8(i=9) "8 (i<n) B (3=1) "B (by3b))
f(b;) "£(by) """ £(by)
This EXCHANGEs the values of b2 and bl
§(i21) "6¢i=3) "8 (3¢n) "B (3=1) *B(b,>b))
£(b,) "£(by) " "£(by)
This sends the false branch joint p.d.f. back to OUTER.
8(121)*8(i=3)"8(3¢n) "B (3=1)"B(b,2p) *
£(b;)"£(b,) """ (by)
It is accumulated there as we shall see.
At the join for the if statement we have only the true
branch left |
8(i>1) *6(i=9) 6 (i<n) "6 (3=1) "§(b,>b)) "
f(bl)'f(bz)"'f(bN)
This adjusts I for the next iteration
§(i+1>1) “8(141=3) "8 (3¢<n) *B(3=1) "B (b,>b))
"£(b))"£(by) " £(by)
We know from step 44 above, that this joint p.d.f. will
be returned with the additional (superfluous)
restriction 6(i<1). Simplifying we have
B1=0) 6 (3¢n) ~8(3=1) *B(b,>b,) "£(b)) "£(by) *** £(by)
This joint p.d.f. is returned at 4b. It joins with

joint p.d.f. that "escaped”.

4-63

v

{5(i=1)+6(i=0)}‘6(j<n)'6(j=1)‘6(b23bl)'f(b1)°f(b2)~-'f(b

9a

3d

4a

44

The result is:
N}
This statement adjusts J for the next iteration, and
(8(i=1)+8(i=0)}*8(5-1¢n) 6 (3-1=1) "8 (b,>b)
"f£(b;) "f(by) " " (by)
is again passed to OUTER.
We see now that this test "traps” all of the joint
p.d.f. in the loop until J exceeds LIM (N-1 in our
case). So we won't mention the false branch until the
end. In the true branch:
(8(i=1)+d(i=0)} "8 (3<n) "8(3=2) "B(b,b)) *
£(b;)"£(b,) """ f(by)
This collapses the old joint p.d.f. on i and results in
8(1=3) "8 (3¢n) 8(3=2)"2:8(b>b) “£(by) "E(by) " *E(by)
In the oblivious version, this was a trivial operation.
Here it destroys information about the distribution of
the I in the last iteration,
This joint p.d.f. arrives at INNER, where this
statement controls the exit of the last of the joint
p.d.f.
In the true branch:
8(i=3) "8 (3¢n) "8 (5=2) "2°8(by>b) “B(by>by) °
£(by)"£(by) " E(by) |
In the false branch:
8(i=9) "8 (3¢n) *8(3=2) *2°(b,2b,) *B(by2b,) °

£(b)) "£(b,) " "£(by)

4-64

6a

8a

The exchange yields:
8(i=3) *8(5<n) *8(3=2) "2 6(b3>b)) B (by>b,) °
£(b))"£(b,) """ £(by)
Here the false branch again escapes in the form of
8(1=2) "8 (3¢n) *B(3=2)"2"8(b2b) *B(by2b) *
£(b)) "£(b,) """ (by)
At the join we have only the true branch joint p.d.f.
left:
B(1=3) 8 (3¢m 8(5=2)*2-8(b33b) "B (b>b
£(b)) *£(b,) " **£(by)
Prepares for the next call of INNER
8(1=3-1) "8 (3<n) "B(3=2) "2"8(by3b)) "6 (by>by) *
£(b)) "£(b,) " "£(by)
This gets through to statement 5 in INNER.
In the true branch (multiply by 6(bl>b2) and simplify):
§(i=3-1) 8 (3¢ny "8 (3=2) "
2‘{6(b1>b2)'6(b33b1)'6(b3>b2)}
"£(b)) "£(by) " £(by)
In the false branch (multiply by §(b,2b), simplify):
b (i=3-1) "8 (3¢<n) " (3=2)
2{8(by2b,) *B(b,2b,))
"£(b)) "E(b,) " * "€ (by)
The EXCHANGE in the true branch yields:
§(i=3-1) 8 (j<n) "8 (3=2) "
2°{8(b,2b,) "B (b,>b)} £(b)) “E(by) " £ (by)

4-65

6a

8a

4b

9a

that

Again the false branch joint p.d.f. escapes
8(i=1) "8 (3<n) *B(3=2)
"2°{8(by3b,) "B (by3b)}
'f(bl)'f(b2)°"f(bN)
At the join we have only the true branch joint p.d.f.
left:
8 (i=3-1) "8 (3<n) *B(5=2) *
2°{8(b32by) *8(b,2b1) 1 £(by) *E(b,) " " £ (by)
Sets I to zero in this case, and the next call of INNER
returns this joint p.d.f.
§(i=0)*8(i¢<n)*8(5=2)"
2°{8(by2b,) *B(by2b) £ (b)) £ (b)) " E(by)
to OUTER at statement 9a.
The three sets of joint p.d.f.s meet and are added
here. We have:
(0(i=0)+8 (1=1)+8(i=2)} "B (5¢<n) *§(5=2) *
2°{6(b32b,) "8 (b,2b 1)} £(b)) *£(by) """ E(by)
Increments J and we get, going back into OUTER at 9b:
(8(1=0)+6 (i=1)+8(1=2) 18 (j<n+1) "6 (5=3)
2°(6(b32b,) *6(b,2b)) 1 £ (b)) *£(by) " *£(by)
By now the pattern is clear. It is even easier to show
the result at the end will be:
(6(1=0)+6(1=1)+....+8 (i=N-1)} 6 (5=N)*

(N-1) 1* (B byby_1) " *8(b,2b)) (b)) "E(by) £ (by)

If we collapse this on i, then we get the same result as

before. Therefore, the change in the program has not

4-66

changed its ability to sort. This form tells us some other
things. Specifically, the value of I that is returned by
INNER represents the number of elements that were found to
be smaller than the J+1th element, It is easy to see that I
can take on exactly J+1 values from 0 to J, and that each of
those values is equally likely. This is something that one
would have expected, but we have proved it without recourse
to any elaborate combinatorial or probabilistic argumentis.
The result just "fell out” of the analysis. It is easier to
write a program that can recognize that the probability
density function of a discrete variable has the same value
at each point, than to have that program say "Each 1 is
equally likelyt®

The other thing that the values and p.d.f. for I tells
us is the number of exchanges that take place. From the
observation above, we get that P(i=j) = E%T so that the
expected number of exchanges for any value of i is

j X

for the entire N elements, this is
Z -1 % . (N3N
3=1 h
which is the correct answer. This turns out to be the

expected number of comparisons, also. We can see that the

running time performance of the sort has been improved by a

factor of two.

4-67

§ 2Bk

TP

Binary Search

We now turn our attention to the analysis of an
algorithm for a Binary Search. This particular version
closely follows one given by Horowitz and Sahni [9]. We
introduce it here for two reasons: (1) it gives us a chance
to present the case statement, and (2) it is the first
"divide and conquer” algorithm that we have considered. The
function INT returns the INTeger part of the argument (i.e.
the floor function),

1 procedure BINARY SEARCH (N, I, X)
global real K{(1l:N)

2 LOW «- 1; UP <- N

3 I €<~ 0

4 SPLIT:while LOW < UP do

5 MID <~ INT ((LOW + UP) / 2)

6 case

7 : X > K(MID) : LOW <€—~ MID + 1

8 : X = K(MID) : I <«- MID; return
9 : X < K(MID) : UP <~ MID ~ 1

10 end

11 end

12 end BINARY_ SEARCH

The recursive equivalent is:

1 procedure BINARY SEARCH (N, I, X)
global real K(1:N)

2 LOW <- 1; UP <- N

3 I €«<- 0

4a call SPLIT (LOW, UP, X, I)

12 end BINARY_ SEARCH
4b procedure SPLIT(LOW, UP, X, I)

4c if LOW < UP then
5 MID <~ INT ((LOW + UP) / 2)
6 case
7 : X > K(MID) : LOW <~ MID + 1
8 : X = K(MID) : I <~ MID; return
9 : X < K(MID) : UP -~ MID -1
10 end
lla call SPLIT (LOW, UP, X, I)
11b endif
llc recurn
11d end SPLIT
4-68

Since it is very straight forward, we will just sketch
the analysis. We start with the array K(1:N) ordered, so we
have the initial joint p.d.f.

8 (k) <ky) 8 (ky<ksy) ° "Btk <k TE(R) TE(Ky) e (K)

The search ke§ X is drawn from a p.d.f. g(x), and the
assignment statements 2 and 3 have their usual effect. As a
result we have SPLIT called with the joint p.d.f.

8 (Low=1) *8 (up=N) "8 (i=0) *g (x) *

8k, <k,) 6(k2<k3)"‘6(kn_l<kn)'f(kl)'f(kz)"'f(kn)
After 4c

6(low5up)‘6(low=1)’6(up=N)‘6(i=0)‘g(x)'
Btk <ky) Bikycky) Bk, <k) E 0k) E (k) T E (k)

After 5
8 (mid=] (1+N)/2]) *8 (1ow<up) *
8 (1ow=1) *8 (up=N) *8 (i=0) "q(x) *
6(kl<k2)'6(k2<k3)"'6(kn_1<kn)°f(kl)°f(k2)'°'f(kn)
At 6 the joint p.d.f. splits into three parts with the arms
of the case statement. The middle leg allows a portion of

the joint p.d.f. to escape back to the calling program.

After 7
8 x>k) B (mia=] (14n) /2]) °

8 (Low=mid+1) *8 (up=N) *B (1=0) *q (x) *
By <ry) Bk ycig) Bk, _ <k)T E k) TE(Ky) e (k)
After 8
Bex=k ;) "8(mia=] (148) /2]) *8 (Low=1) *§ (up=N) "6 (1=mid) *g (x) *

6tk ycky) *Bikychg) Btk _ <k) £k TECk,) T E (K)

4-69

-

After 9
8 (x<ky;q) B (mia=) (1 48y /2))

6(low=l)’6(up=mid-l)‘6(i=0)'g(x)'

6(kl<k2)'6(k2<k3)"'6(k

<kn)'f(k1)°f(k "’f(kn)

2)
The sum of the joint p.d.f. after 7 and after 9 is

n-1

‘presented to the next call on SPLIT. Each time SPLIT is

called, some of the joint p.d.f. escapes and is returned,
until the final return for no find. It is relatively easy

to see that the final joint p.d.f. will be

[§(i=0) { 6(x<kl) + 6(x>k1)6(x<k2) Foeveee 6(x>kn)]+

n
> (Briemia) Bix=kpyy))

T mid=1

"g(x) "Bk <k,) *Bky<kg) "Bk <k TE k) TE (k) TTE (K

The behavior of this joint p.d.f. is dependent on the form
of g(x). If this p.d.f. restricts the value of x to those
of the K(M) with equal probability, then we see that any of
the values is equally likely. The behavior of the number of
comparisons can be derived by instrumenting the algorithm.

Doing so results in the usual log n behavior.

4-70

e

CHAPTER 6

APPLICATION TO A MISCELLANEOUS PROBLEM

We will now look at Jonassen's and Knuth's celebrated
"Trivial Algorithm Whose Analysis Isn't" ([8]. Ramshaw, a
student of Knuth's, applies his Frequentistic System to this
algorithm in his thesis [5]. Jonassen and Knuth did not
give the derivation of the initial recursion relationships,
but derived them "by reasoning almost directly from the code
of the program* ({5]. We now believe that our work has
formalized this "reasoning almost directly from the code"”,
because, when applied to this algorithm, it proceeds
directly to their equations 2.1, 2.2, and 2.3 [8].

Basically the algorithm involves the insertion and
deletion of keys in a binary tree structure. The insertion
is done with the standard binary insertion algorithm and the
deletion is done using Hibbard's algorithm[18]. The two
possible trees with two keys are called F and G. The five
possible binary trees with three keys are called A, B, C, D,
and E. With x < y < 2z, we have the following pictures for

these binary trees:

4-71

R LYO=IF SN AR e MR A Lo ™ Vi

e P e

R e

A(x,yY,2) B(x,y,2) C(x,Y,2) D(x,y,2) E(x,y,2)
2 z Y X X
/ / / \ \ \
Y X X z z y
/ \ / \
X Yy Y z
F(x,y) G(x,Y)
Y X
/ \
X y

The insertion algorithm is the standard one for binary
insertion, the new elemcnt is appended to the tree in the
appropriate place. Hibbard's deletion algorithm proceeds in
a straight-forward manner except that the deletion of x from
D(x,y,z) results in G(y,z) instead of F(y,z), as one might
expect. The insertion and deletion algorithm is given in
detail in the program which follows. We will not go further
into the background of the algorithm. Anyone interested
should see the Jonassen and Knuth article [8], which does
that quite nicely.

While the others ([5,8] have always assumed that the
keys are selected from a uniform distribution, it turns out
that this restriction is unnecessary in our approach. It is
only necessary to have the keys drawn from the same,
stationary distribution f£(x).

Jonassen and Knuth (8] give the graphical and word
procedure representation of the algorithm, we will only
present the algorithm as a SPARKS program, We will use

Ramshaw's [5] notation for the tuples representing the

4-72

condition of the tree. Furthermore, we will adopt the
convention that after assignment the "from" variables are
set to zero ("killed"™). This is not really necessary, but
it does simplify the notation, since after the variables are
"killed" we no longer have to carry t.em in the joint p.d.f.
equations.

1 procedure TRIVIAL (N)
/* Load the initial tree */

2 X €- randomf; Y <- randomf
3 if (X <Y) then

4 <S;V,W> <- <G;X,¥Y>

5 else

6 <S;V,W> <— <F;Y,%X>

7 endif

/* The main algorithm loop */
8 for K ¢~ 1 to N
/* Insert a key */

9 R <- randomf
10 case
11 : S=Fand R<K V : <T;X,Y¥,2Z> <~ <A;R,V,W>
12 : S=Fand V < R < : <T;X,Y,Z> <€~ <B;V,R,W>
13 : S=F and W <R : <T;X,Y,2> €- <C;V,W,R>
14 : S=Gand R <K V : <T;X,Y,2> €~ <C;R,V,W>
15 : S=Gand V < R < : <T;X,Y,2> €~ <D;V,R,W>
16 :+ S=G and W < R : <T;X,Y,2> <€- <E;V,W,R>
17 end

/* Now do the deletion */
18 L <~ randomXYz
19 case
20 : T=Aand L = X : <KS;V,W> <= <F;Y,2>
21 : T=Aand L = Y : <S;V,W> <~ <F;X,2>
22 : T=Aand L = 2 : <S;V,W> < <F;X,Y>
23 : T=Band L = X : <S;V,W> < <F;Y,2>

4=73

24 : T=Band L =Y : <K5;V,W> <~
25 s T=Band L =2 : <KS5;V,W <~
26 : T=Cand L = X : <S5;V,W> <~
27 : T=Cand L'=Y : <KS;V,W> <
28 : T=Cand L =2 : <K5;V,W <
29 : T=Dand L = X : <K5;V,W> <~
30 : T=Dand L =Y : <KS;V,W> <~
31 t: T=Dand L = Z : <KS;V,W> <~
32 : T=Eand L =X : <S;V,W> <~
33 : T=Eand L =Y : <5;V,W> <~
34 : T=Eand L =2 : <5;V,W> <~
35 end

36 repeat

37 end TRIVIAL
The recursive version of this program is then,
1 procedure TRIVIAL (N)

/* Load the initial tree */

2 X <- randomf; Y é-~ randomf
3 if (X <Y) then
4 <S;V,W> €~ <G;X,¥Y>
5 else
6 <S;V,W> <- <F;Y,X>
7 endif
/* The main algorithm loop */
8a K ¢~ 1
8b call MAIN (K , N)

37 end TRIVIAL

8c procedure MAIN (K, N)

8d if (K < N) then
/* Insert a key %/
9 R <~ randomf
10 case
11 : S=Fand R< V : <T;X,Y,2> €- <A;R,V,W>
12 : S=Fand V<R CW : <T;X,Y,2> ¢« <B;V,R,W>

4-74

<F;X,2>
<G;X,¥Y>
<G;Y,2>
<F:X,2>
<F;X,¥>
<G;Y,2>
<G;X,2>
<G:;X,Y>
<G;Y,2>
<G;X,2>
<G:;X,Y>

. e\ —

5,

13 _ : S=F and W < R : <T;X,Y,2> <- <C;V,W,R>
14 ' : S=Gand R< V : <T;X,Y,2> €~ <C;R,V,W>
15 i1 S=Gand V<R<CW: <T;X,¥,2> €= <D;V,R,W>
16 : =G and W< R : <T;X,Y,2> €~ <E;V,W,R>
17 end

/* Now do the deletion */
18 L €- randomXYz
19 case
20 : T=Aand L = X : <S;V,W < <F;Y,2>
21 : T=Aand L =Y : <S;V,W> < <F;X,2>
22 : T=Aand L =2 : <S;V,W> < <F;X,Y>
23 . T=Band L =X : <5;V,W> ¢ <F;Y,2>
24 : T=Band L =Y : <S;V,W> < <F;X,2>
25 : T=Band L = 2 : <S;V,W> <~ <G;X,¥>
26 : T=Cand L = X : <S;V,W> < <G;Y,2>
27 : T=Cand L =Y : <S;V,W> <~ <F;X,2> :
28 :T=Cand L =2 : <S;V,W <= <FiX,¥> }
29 : T=Dand L = X : <S;V,W> < <G;Y,2> |
30 : T=Dand L =Y : <S;V,W> <~ <G;X,2> '
31 s T=Dand L = Z : <S5;V,W> 4= <G;X,¥> .
32 : T=Eand L =X : <5;V,W € <G;Y,2> i
33 . T=Eand L =Y : <S;V,W < <G;X,Z> :
34 : T=Eand L =2 : <S;V,W> < <G;X,¥>
35 end
36a K=K+1
36b call MAIN (K, N)
! 36¢ endif

36d end MAIN

The analysis is as follows:

After 2
£(x) " £f(y)

After 3
6(x<y)‘f(x)'f(Y)

4-75

———

——

After 4

§(s=G) 0 (vew) “£(v) "£(w)
After 5

8 (x>y) “£(x) “£(y)

After 6

§(s=F) "8 (vew) " £ (v) " £ (w)
After 7

(8 (s=F) + 8(s=G)} 8 (vew "E(v) *£(w)

After 8a

§(k=1) (8 (s=F) + §(s=G)} "0 (vew) "£(v) £ (w)

Which 1is what we expected, either tree is equally
likely, and the joint p.d.f. is that of a sorted list of two
variables. Rather than continue to follow an explicit
example through the algorithm, as we have done in the past,
we will define unknown functions to represent the various
tree forms. Following these through the algorithm will
result in the recursive equations. Let:

8 (k=K) "8 (vew) * (B (s=F) " £, (v,)+ (s=G) g, (v,w))
represent the joint p.d.f. that is presented to each call of
the recursive subroutine MAIN. This form comes from looking
ahead and recognizing that no joint p.d.f. "leaks out" until
the end of the loop.

After 84
8 (k<ny 8 (k=k) 8 (vew) * (B (s=F) £, (v,) +8(5=G) g, (v, W)}
After 9
8 (k<N *8 (k=K *§ (vew) * (8 (s=F) £, (v,w)+D(s=G) g, (v, w) } "£(r)
In order to simplify the expressions, we will drop the

loop-counting-and~stopping factor 6(k£N)‘6(k=K). We will

4-76

also note that 6(S=F)°6(s=c) = 0, and use this in each arm
of the case statement.

After 11
8 (s=F) "£, (v,w) "£(r) *b(v<w) *B(rev)

(t=a) 8 (x=) "8 (y=v) *b (z=w)
using the convention of "killing" the old variables,
B(t=a) £, (y,2) " £(x) "D (xcy<z)
Note that this convention simplifies the assignments to
3 <t;x,Y,z> because the distributions of these variables is

always 6(s=0)'6(v=0)'6(w=0) at this point.

After 12 :

§(t=B) £, (x,2) "£(y) "Bix<y<z)
After 13

8 (t=C) "£, (x,y) "£(2) "B (x<y<z)
After 14

6(t=C)‘gk(y,z)'f(x)’6(x<y<z)
After 15

8 (t=D) "g, (x,2) "€ (y) 8 (x<y<z)
After 16

8 (t=E) *q, (x,y) "£(2) "8 (x<y<z)
After 17 j

We have the sum of‘the six arms of the case statement,
1 It is at this point that, by looking ahead, we see that the
next general functions should be defined as:
a, (x,y,2)=f, (y,2) "f(x)
b, (x,y,2)=f, (x,2) "f(y)
Cplx,y,2)= £,(x,y)"£(2) + g, (y,2) " £(x)
dk(x,y,z)=gk(x,z)’f(y)
e, (x,y,2)=g; (x,y) "£(2)

4-77

With f(x)=6(0<x<1) for a unitary distribution, these
are equations 2.1 in Jonassen and Knuth [8].

The whole joint p.d.f. a%ter 17 is then:

(B(t=n)a, (x,y,2) + B(t=B)"b, (x,y,2) + §(t=C) c (x,y,2)
+ 6’t=D)'dk(x,y,z) + 6(t=B)'ek(x,y,z) } ¢ 6(x<y<z)
After 18
{6(t=A)'ak(x,y,z) + 6(t=8)‘bk(x,y,z) + 6(t=C)‘ck(x,y,z)
+ 6(t=D)'dk(x,y,z) + 6(t=E)'ek(x,y,z) |
§(x<y<z) * { %6(1=x) + v + W1=2))

where the last term expresses the fact that any of the
keys may be deleted with equal probability.

After 20
6(t=A)‘ak(x,y,z)'%6(1-x)'6(s=p)°6(v=y)'6(w=z)'6(x<y<z)

We now apply the convention of setting t,x,y, and z to
zero. This is done by "integration® over these variables
using Theorem 5. We will use our summation notation, which
is defined to work the same as integration if the functions
are taken to be continuous. Remember that if a variable of
integration appears in an Boolean delta function and is
equal to a free variablé, then the effect is the same as a
change of variable. In this case y and 2z appear this way,
while x appears only with respect to other variables of
integration.

{6(t=A).ak(x,y,z).%6(1=x)
l,t,X,er

8 (s=F) O (v=y) "8 (w=z) *O(x<y<z)) =

4-78

"

|
|

W (s=F) B (vew)) ay (x,v,w) .8 (x<v)
X

Do the same thing with the 14 other arms of the case

statement.

After 35

6(v<w).[%6(3=F).{ 2: (3 (x,v,w) + by (x,v,W)).6(x<v)
X

+ E: (ap (v,y,w) + by (v,y,w) + Cp(V,y,W)).6(v<y<w)
y

+ E: (a (vyw,2) + ¢ (v,w,2)) B (wez))
z

+ %6(S=G)-{ z: (e (x,v,w) + dk(x,v,w) + ek(x,v,w)).a(x<v)
X

+ z_ (d (v,y,w) + ek(v,y,w)).ﬁ(v<y<w)
b4

+ E: (bk(V.w.Z) + dk(V.w.z) + ek(v,w,z)).6(w<z) } 1
z

After 36a

The value of k is incremented, and we can identily the
terms of the joint p.d.f. after 36a as equal to fk+1(v,w)
and gk+1(v,w) respectively. We now have arrived at

Jonassen's and Knuth's recursive equations 2.2 ([8].

4-19

CHAPTER 7
SUMMARY AND CONCLUSIONS

What have we accomplished? We have sketched the
foundation for a systematic approach to algorithm analysis

that is based on two ideas:

l. Convert all 1loop constructs within a program to
recursive subroutine calls

2. Develop a rerresentation of the initial joint p.d.f.

of the program variables, and follow the effects
that the program has on that joint p.d.f.

These two ideas yield recurrence relations for the
joint p.d.f. which can be solved to get the joint p.d.f. at
any point in the execution of the algorithm. The branching
probabilities can be calculated directly from the joint
p.d.f. at each conditional statement. It is this detailing
of the branching probabilities that was missing from the
. automatic analyzers METRIC and EL/PL. Therefore, the logical

next step would be to add this method to the existing

analyzers.

of the behavior of joint p.d.f.s in a program is the intro-

’ duction of the Boolean delta function. This function, by

4-80.

—— e

The central addition we have made to the understanding

[V O

connecting the boolean world of the algorithmic conditional
s;atement to the peal numbers, makes it possible to keep
track of the effects of conditional statements on the jcint
p.d.f.s. [Its form, essentially a list of arguments, makes
it very easy to represent and operate upon in a computer
program, especially since LISP seems to be the language most
used in this type of work.

Our approach, by capturing the behavior of the program
variables in detail, also includes a means for verifying the
performance of algorithms. All of the information that can
be obtained from previous methods of program verification
seems to be present in our method.

Regardless of the underlying simplicity of the ideas,
the method is very tedious to apply to any significant
algorithm. The examples given in this thesis were made
possible by the string manipulation features of a DIGITAL
WS/78 Word P-ocessor. The next thing that must be done
before more useful work can be done in this area is to
automate the technique. This automated processor should be
an interactive one in the EL/PL style.

With an automatic processor, investigations can begin
into some of the simple program constructs which we have not
addressed. Multiplication, division, addition and subtrac-
tion of variables have not been considered. Since these are
very important parts of many algorithms, this work must be

extended to cover them before it becomes really useful,

4-81

10.

References

Wegbreit, B., "Mechanical Program Analysis", Comm. ACM
Vol.18, No.9 (Sept.l1975), 528-539.

Wegbreit, B., "Verifying Program Performance", J. ACM,
Vol.23, No.4 (October 1976), 691-699.

Cohen, J. and Zuckerman, C. "“Two Languages for
Estimating Program Efficiency®, Comm. ACM, Vol.l7,
No.6 (June 1974), 301-308. .

deFreitas, S.L. and Lavelle, P.J., "A Method for the
Time Analysis of Programs", IBM Syst J, Vol.l7,
No.l (1978), 26-38.

Ramshaw, L.H., "Formalizing the Analysis of Algorithms",
Ph.D. Dissertation, Stanford University, 1979.
Knuth, D.E., Th=2 Art of Computer Programming (Vol.l and
Vol.3). Addison-Wesley, Menlo Park, California,

1968.

Horowitz, E. and Sahni, S., Fundamentals of Computer
Algorithms. Computer Science Press, Potomac,
Maryland, 1978.

Jonassen, A.T. and Knuth, D.E., "A Trivial Algorithm

Whose Analysis Isn't", Journal of Computer and
System Sciences, Vol.16 (1978), 301-322.
Horowitz, E. and Sahni, S., Fundamentals of Data

Structures. Computer Science Press, Potomac,
Maryland, 1976.

Aho,A., Hopcroft,J. and Ullman,J., The Design and
Analysis of Computer Algorithms. Addison-Wesley,
Reading, Massachusetts, 1976.

4-82

P Yo N SR T

11.

12.

13.

14.

15.

16.

17.

18.

Cohen, J. and Roth, M., "On the Implementation of
Strassen's Fast Multiplication Algorithm"™, Acta
Informatica, Vol.6 (1976), 341-355.

Hogg, R.V. and Craig, A.T., Introduction to
Mathematical Statistics (Second Edition).
Macmillian, New York, 1959,

Kodres, U.R., "Discrete Systems and Flowcharts", IEEE
Trans, Software Eng., Vol, SE-4, No. 6 (November
1978), 521-525,

Davies, A.C., "The Analogy Between Electrical Networks
and Flowcharts", IEEE Trans. Software Eng., Vol.
SE~6, No. 4 (July 1980), 391-394.

Hofstadter, D.R., G;dell Escher, Bach: an Eternal
Golden Braid. Basic Books, New York, 1979.

Lueker, G.S., "Some Techniques for Solving

Recurrences”, Computing Surveys, Vol.l12, No.4
(Qecember 1980), 419-436.

Anderson, R.B., Proving Programs Correct. John Wiley &
Sons,'New York, 1979.

Hibbard, T.N., "Some Combinaéorial Properties of

Certain Trees with Applications to Searching and
Sorting®, J. ACM, Vol, 9 (1962), 13-28,

4-83

e e st s o

“

APPENDIX A

LINE~-BY-LINE ANALYSIS
‘of

"QBLIVIQUS"™ INSERTION SORT

We must do the analysis for a specific class of initial
distributions for the problem to be tractable. Specifical-
ly, we will assume that each element of B(l:N) is drawn
independently from a well defined, stationary p.d.f. f(bi).
Therefore the initial joint p.d.f. is simply

fB(bl,bz,b3,.....,bN)-= f(b;) * £(b,) Tt f(by).

The converted program is:

1 procedure INSERTION SORT (B , N)
2 real B(1:N)

3a J <€~ 1

3b call OUTER(J, N-1, B)

10 end INSERTION SORT

3c procedure OUTER(J, LIM, B)

3d if LIM - J > 0 then

4a I <~ J

4b , call INNER(I, B)

9a J €~ J + 1

9b call OUTER(J, LIM, B)
9c endif

9d end OUTER

4~84

g pels- 30 % M AL

il

) WL, -,

o

4c
44

8a
8b
8c
8d

procedure INNER(I, B)
1£ I > 1 then
if B(I) > B(I+l) then
EXCHANGE (B(I), B(I+l))

endif
I «<- I -1
call INNER (I, B)
endif
end INNER

The numbers will refer to the statement numbers of the

recursive version of the algorithm.

1

3a

3d

4a

Initial joint p.d.f.
fB(bl,bz,b3,.....,bN) = f(bl) ° f(bz) et f(bN).
Adds a new variable
0(3=1) * £(by)) " £(by Tt £(by).

Splits the distribution based on the values of J and
LIM.
In the true branch:

§3¢m) = 8(3=1) " £ * £(by * T E(by) .
In the false branch:

0032m) * 8(3=1) " £(b)) " £(by) Tt E(by.
We have made the substitutions of the instances of the
dummy variables in the routine. Now, if N = 1, then
the true branch is zero, the false branch reduces to
6(j=l) * f(bl), and we are done.
Adds a new variable in the true branch

6(i=j)'6(j<n)'6(j-l)’f(bl)'f(bz)"‘f(bN).

This joint p.d.f. is transfered with the call at 4b.

4=85

L

4d Splits the distribution based on the value of I.

In the true branch:

8(i21) *8(i=3) *8(i<n) *8(3=1) "£(b)) "£(by) "*"E(by) .
In the false branch:

8(ic1)*8(i=3) "B(3<n) *8(3=1) "£(b)) "E(by) " "£(by).

5 Finally things get interesting! This is the first test
involving the data itself. This statement splits the
joint p.d.f. on the basis of the values of B(I) and
B(I+1).

In the true branch:
§(i21) 8 (i=9) "8 (3¢n) "8 (5=1) "B (b >b,) "£(b)) "E(by) by
In the false branch:
8(i1) "6 (i=3) "8(3¢n) *8(3=1) "8 (b,2b,) (b)) "E (b)) E(by) .
6 This EXCHANGEs the values of b2 and b1
8(i>1) *8(i=3) *8(3<n) *8(3=1) *8(b,>b) "£(by) "£(b)) *"E(by) .
7 At the join for the if statement we have
§(i>1) *8(i=3) *8(3<n) (=1 "
(6(by>b)+B(by>b)} E(b)) “£(by) " £ (by) .
It is now that we can see the significance of our
choice of initial joint p.d.f. which is symmetric with
respect to the exchange of variable indicies.
At this point we must decide whether the probability
that bi=bj is going to be significant, or not. If we choose

to deal with continuous distributions, then this probability

i
3

is zero. Likewise, if we say that the discrete elements are

distinct we have the same thing. We will do this so that we

4-86

can write the joined joint p.d.f. as

8a

8b

9a

34

4a

44

8(121) *6(i=3) "83<n) *8(3=1) 26 (by2p) "
£(b)) "£(by) "*"£(by)
This adjusts I for the next iteration
§ei+1>1) b (i+1=3) *6(5<n) "6 (3=1)"

2°0(b,2b)) "£(b)) "E(b,) " TE(by)
We know from step 44 above, that this joint p.d.f. will
be returned with the additional (superfluous)
restriction 6(i<l). Simplifying we have
8(i=0) *8(3<n) "8 (3=1)*2°8(b,>b) "£(b)) "£(b,) " *£(by)
This Jjoint p.d.f. is returned at 4b.

This statement adjusts J for the next iteration, and

8(1=0) *§13-1<n) "6 (3-1=1) *2"8(b,>b) "£ (b)) "£(b,) " "E(by)

is again passed to OUTER.
We see now that this test "traps" all of the joint
p.d.f. in the loop until J exceeds LIM (N-1 in our
case). So we won't mention the false branch until the
end.
In the true branch:
(j¢n) *B8(i=0) *8(3-1¢n) *8(5-1=1)"
2°8(b,2b,) *£(b)) "£(b,) """ £(by)
This collapses the old joint p.d.f. on i and results in
§(1=3)8(3¢n) *6(3=2)"2°6b,>b) "£(b)) "E(b,) " "£(by)
We have simplified the expression with respect to j.
This joint p.d.f. arrives at INNER, where this

statement traps the joint p.d.f. until IK1.

4-87

8a

In the true branch:
8(i=3)"6(3¢n) *8(3=2)"2"8(by2b)) *8(by>by) *
£(b)) "£(b,) " "£(by)
In the false branch:
8(i=3) "8 (3¢n) *B8(3=2)"2°8(b,>b)) "B (by3b,) *
£(b)) "£(b,) """ £(by)
The exchange yields:
8(i=3) *8(3<n) *8(3=2) "2°8(b33b,) "B (by>b,) *
£(b;) "£(by) " "£(by)
At the join we have:
Si=9)0(¢ny b (3=2)"
2°{6(b,2b)) *0(by>b,) +8(by3b) *B(by>b,) b
E(b)) "E(by) """ E(by)
Prepares for the next call of INNER
8 (i=3-1) "8 (j<n) b (3=2) *
2°{6(b2b)) "B (b 3b,) +b(b33b) *B(b b,)
£(by) "£(b,) ***£(by)
This gets through to statement 5 in INNER.
In the true branch(multiply by 6(b1>b2) and simplify):
8 (i=3-1) "6 (j<n) b (3=2) "
2° {8 (b;>b,) B (b33b,) B (by>b,) 1 £ (b)) £ (by) * £ (by)

In the false branch(multiply by 6(b22b1) and simplify):

8(i=3-1) "0 (3¢n) *8(3=2) "
2°{8(b,>b,) *B(by>b,) +8(b,2b1) *B(by3b)) 8 (by>by) 3°
£(b)) "£(b,) " *"£(by) =

4-88.

e o oAk e 2 s

g g SERLN S

8a

INNER, at its call from OUTER, the distribution

it returns the distribution

This can be shown to be true in a straight-forward, if

somewhat tedious, manner.

8 (i=3-1) "8 (5¢n) " (5=2)"
2°{2°0(by3b,) "8(by2b)} E (b)) E(by) * £ (by)
The EXCHANGE in the true branch yields:
8i=3~1) "8 (3¢n) 8 (3=2)
2° {8 (b,>b,) "B(by>b,) "B (by>b)} £(b)) "E(by) * " E(by)

8 (i=3~1) *8(3<n) " (3=2) "
2°(8(b33b,) *B(b,2b)} £(by) "E(by) """ £(by)
At the join we have:
§(i=3-1) "B (3<n) "B (3=2)
2°{3°8(b32b,) "8 (b,2b) 1 £(b)) "E(by) " £ (by)
Sets I to zero in this case, and the next call of INNER
returns this joint p.d.f.
8(i=0) 8 (3<n) *b(3=2)"
27(3"8(by2b,) "8(b,2b)} £(b)) "E(b,) """ £(by)
to OUTER at statement 9a. ' :

This suggests the induction hypothesis that if you give

Sei=3) 6 (3<n) "0 (3=k) *

kt*8(b>b,)" 8(b,b) "E(b) E(b,) " £(by)]

k-1)

e

A g

8(i=0) "6 (3¢n) *8(3=x) * 3
(k+1) 180y, 136,)***B(b,2b) "£(b)) “£(b,) " £ (by)

OUTER's “loop-stopper" releases this joint p.d.f. when

4-89

- A—s-

J=N and we have the result:
8(i=0) *8(3=N) *N1*B(by2by_;) " "6 (by2b)
f(bl)‘f(bz)"'f(bu)

This is precisely the proper answer which is usually derived
using combinatorial arguments [12]. It may be easier to
implement this method of analysis, even though it requires
an induction proof solver, than to automate the rules of
combinatorial arguments and proofs. It should also be noted
that at every step of the way we had a precise expression
for the performance of the program. The marginal p.d.f. for
any program variable gives the probability that the variable
will take on a particular value.

Once the analysis of the bare algorithm is complete, an
analysis for any particular aspect can be done by instru-
menting the algorithm. It is easy to show that this
algorithm requires exactly gNi;N[comparisons between the

elements, which is twice as many as the *improved" version

of the algorithm.

4-90

Bhe oy ks e e

ALGORITHMIC COMPLEXITY
Part 5

by
Philip J. Janus

ADAPTIVE METHODS FOR UNKNOWN DISTRIBUTIONS
IN DISTRIBUTIVE PARTITIONING SORTING

ABSTRACT

Distributive Partitioning Sorting (DPS)' is a new,
innovative, practical method to sort a set of items on a
computer. This metnod has been snown to be biased toward
uniformly distributed data, performing poorly on skewed
distributions. The purpose of this work is to find adaptive
methods of DPS which will sort any unknown distribution equally
well and remain competitive with DPS.

Two adaptive methods were developed and thorougnly tested,
the Ranking Method and the Cumulative Distribution Function
(CDF) Method. These wmethods transform unknown distributions
into uniform distributions, and then perform the sorting.
After an implementation of OPS was benchmarked against
Quicksort, experiments were run on four distributions (Uniform,

Normal, Poisson, and Exponential) using four algorithms (two

5~1

T RPN AR Sivhackh S s TN ek Kbt e

versions of DPS, Ranking, and CDF). Statistics were taken to
measure the efficiencies and run times of the algorithms. The
results were analyzed against theoretical and intuitive
expectations so that conclusions could be reached regarding the
performance of the methods.

It was found that if it is known in advance tnat the data
distribution will typically be wuniform, normal, or sligntly
skewed, then it is advisable to use DPS. However, if it is
possible the data distribution might be very skewed, or
extremely large or small data values exist relative to tne rest
of the data, then there is little to lose and much to gain by
using the CDF adaptive method. CDFOPS contained only a 2% to
4% overhead to DPS in tne uniform case, and ran up to 12%
better for 30,000 items than DPS on exponentially distributed
data. The ranking method was found to contain too much
overhead to be competitive with DPS. Suggestions to further
improve CDF are made, and future implications of this thesis

work are discussed.

5-11

ACKNOWLEDGEMENTS

I would first of all like to express my deep appreciation
to my thesis advisor, Dr. Edmund Lamagna, whose comments and
criticisms influenced the development and implementation of
this thesis work. Also, I would 1like to thank the other
members of my thesis committee, Or. Edward Carney, Dr. Leonard
Bass, and Dr. Richard Bates, whose critiques and suggestions
motivated and clarified many of the ideas in this work. I also
extend my thanks to the staff of the University of Rhode Island
Academic Computer Center for putting up with "that guy with
PL/1 problems". I am deeply grateful to Eleanor Gray for her
hard work and patience typing and editing the manuscript,
Research materials were referenced at the University of Rhode
Island Library and-the M.I1.T. Engineering Library. The work
was supported by Air Force Systems Command, Rome Air
Development Center, under Contract No. F30602-79-C-0124.

Lastly, I extend my love and thanks to my Mother, Father,
Da'kid, and Gail for their encouragement when things weren't
going well, their support when things did, and their

understanding when I took my troubles out on them instead of

the computer! 1 thank you alil!

PJ
"Think of all difficulties as opportunities for creating

something new."

5-111

PREFACE

A large percentage of data processing applications is
spent sorting data. For that reason, it is not surprising that
sorting is the most widely studied problem in computer science.
The faster data can be sorted, the more computer time and money
can be saved.

The history of the sorting praoblem is long and interesting.
As expected in any field of study, once an algorithm has been
developed, somebody tries to find a better one. This is true
with a sorting method called Quicksort, developed in 1962.
Quicksort had been shohn to perform fastest on most machines
once some modifications were made to it.

This was tne case until 1978. 1In January of that year, a
Polish computer scientist named Wlodzimierz Dobosiewicz

published a paper in Information Processing Letters detailing a

sorting algorithm called Distributive Partitioning Sorting, or
DPS. This new sorting method was shown to perform much better
than Quicksort. Very soon afterward, debate began as to its
true practicality and significance.

And as could be expected, people started looking for ways
to improve it. This thesis conducts an in depth look at OPS,
and the various problems associated with it. The main focus of
this work 1is to improve the overall performance of the
algorithm. The author pleads guilty to first degree

improvement.

S5-1iv

— -

TABLE OF CONTENTS

I Discussion of Prior Work...coeeeeeeeeceeceescsnncsonsasl
1.1 Introduction to DPS...eeeveeeeonscocnsnacnsosesanal

1.2 Definition of Sorting.....coccevevennn ceseesasesceeld

1.3 Partition Exchange Sorting....ccceiiecncacnesennssab

I.4 Bucket Sorting..... teacesesessesseasssnassansesseld

1.5 Distributive Partitioning Sorting................18

1.6 Problems with DPS.....ccvevnernnnas cessssesssnsaaslb

Il Adaptive Methods for Unknown Distributions............36
IT.1 Frequency Distribution Curves..... cstetrsessaresesddd
IT.1.1 Method of Moments...ceceecessnecncoscasnnsseldd

I1.1.2 Curve Fitting.................;.............43

I1.2 Cumulative Distribution Function Method..........45

I1.3 Ranking Method.....cvieessessncoccasccaccnnnnnsssd?

I11 Experimental Design and IssuUeS..cioiveecccnecvaconansasdS
Irr.1 Experimental Problems and IsSu@S...ceeeeccvcssaeedd
111.2 Experimental DesSign...eeeesroeeccnacenccsecacsosasd?
II1.3 Discussion of Fixed VariableS....eeveeevescensaasb0

IV Results and CONCIUSTIONS.veeeeossoosscecacscsosssnsssesbd
Iv.1 Expectations, Results, and CoNClusSioNS.eeeeeeaesssbl

Iv.? Summary of CONCTUSTONS e eessssescssccsnasasssoeessBS

v Considerations for the Future.....cocececeecccscansssa89
v.1 MO ifiCAtionS.eeseeeeeseosossnscoasansensassosaessBY

v-? lmp]ications..-...-...--..-.-..o.........o..-...-go

v.3 ‘n COﬂC]USiOﬂ.-.o-o.-..o-o.-...-..-.-....-......-9?

Bib‘iography-...-.-.--.o....-....o-.n..a-.-....--..--..-....93

S=v

pu—_——

It.1
11.2
I1.3
I1.4

IT.6
I1.7
I1.8

I11.1

Iv.1
Iv.?
Iv.3
Iv.4

LIST OF FIGURES

Comparison Tree..ceevevceecoacas cesscessasscccssnssasaced
Algoritam QUICKSORT...... P .
LSD Radix Sorting......ceueen. T 1
Algorithm SORT........c0viunnnn s &
Example of Distributive Partitioning Sorting........ eeslb

Algorithm DPS..... ceeraenanene creenan Cerrsiesneeass ‘o034

Concerns of Adaptive Methods.....c.cevevvecienereess...38
Frequency Distributions...covieinceacenenns Ceeeses ceve...80
Line Fit to Frequency Probabilities..cecesveeensceoscsnd4
Cumylative Distribution Function Uniform

Transformation........c... O X
Probability Density Curve and Cumulative

Distribution Function.....ceeeeveeeeeresrocenns cesees89
The Steps of Algorithm COF.....veveiiereerrcienennneaaesd0
ATgorithm CDF..ieieiieeeneessseeesasnasoescncassssssnssdl

Algorithm RANKING.....cevieeenrecnsreccanconns L
Cell ProportionS.eecececececes Ceeesesennesesssessesasasbl
Benchmark.«.eeocesosasossnsosessscasscnnas esesessscnsssabb
Uniform Experiments..ccceeenncecacncsncsonosacsnes ceveedd9

Exponential Experiments......coveeenccensocecsosansaess8l

Run Time Percentages...ccoceessesesesccccsacccnsonsaeessB]

S-vi

LIST OF TABLES

Benchmark....oeeeeveeocens cesereeanens I .1
DPS(mdrg) Experiments...... Cetseenasesan Ceeeereeertnean ..69
2.1 Largest Bucket Sizes

2.2 Percentages of Filled Buckets

2.3 Run Times

DPS(median) Experiments....... ceeernenans e seenoenensesan .71
3.1 Largest Bucket Sizes

3.2 Percentages of Filled Buckets

3.3 Run Times

Ranking Experiments....ceuvsven Ceeessesessraassesasenes I A
4.1 Largest Bucket Sizes

4.2 Percentages of Filled Buckets

4.3 Run Times

CDF Experiments...cccvvaen cesseesanene cesecsansenes reeseasld
5.1 Largest Bucket Sizes

5.2 Percentages of Filled Buckets

5.3 Run Times

Number of Second Level ReCUrsSiONS...cceeeressosscanssssesslb
6.1 Normal

6.2 Poisson

6.3 Exponential

Uniform Experiments.......................................78

.1 Largest Bucket Sizes
.2 percentages of Filled Buckets

~NN o~

.3 Run Times

S5-vii

LIST OF TABLES (continued)

8 Normal Experiments......cccevevenas cesscaaen P -3 |
8.1 Largest Bucket Sizes
8.2 Percentages of Filled Buckets
8.3 Run Times
9 Poisson Experiments..veceeeeenns Cetetrssesracenses csecans 82
9.1 Largest Bucket Sizes
9.2 Percentages of Filled Buckets
9.3 Run Times
10 Exponential Experiments....ceeeeeervscnscscocnannaes P X
10.1 Largest Bucket Sizes
10.2 Percentages of Filled Buckets
10.3 Run Times
11 Run Time Percentages..... -1
11.1 DPS(median)
11.2 Ranking
11.3 COF
S5-viii

i 5 YN AP <4 - 2757

CHAPTER I

DISCUSSION OF PRIOR WORK

1.1 Introducing DPS

In 1978, a new sorting method <called Distributive
Partitioning Sorting, or DOPS, was presented to the world. The
algorithm was published in the European periodical Information

Processing Letters by a Polish computer science student named

Wlodzimierz Dobosiewicz (pronounced Vod-jim'-yits Do-bo'-shev-its)

{00B8078a]. The article detailed a fast, practical, O0(n)
sorting algorithm that <could outperform current “"fastest"
methods. The results of the paper were so astounding that
Datamation proclaimed it "the first real innovation in (sorting)
in about 15 years!" [DATA78]. Experimental results on a COC
computer found DPS to be 30 times faster for 5000 items than
its nearest competitor, Quicksort. It has also been shown that
this factor increases as the number of items increases. The
potential for saving computer time and money using DPS is great.

In Distributive Partitioning Sorting it can be shown that
if the data 1s uniformly distributed, the expected complexity
of the algorithm is O(n); that is, the expected running time of
the program is cn, where ¢ is a constant that is multiplied by
n, the number of items to be sorted. The drawback with DPS is
that it is much slower in the worst case. A]tﬁough DPS has an

0(n) expected case complexity, it is O(n log n) in the worst

5-1

A e e

1 ————— s - -

caae. DPS approaches the worst case as the data distribution
becomes more and more skewed, such as with a series of
factorials. The purpose of this work is to show that the
performance of DPS can be improved for unknown distributions.
The algorithm would then be gquaranteed to outperform its

competitors for any input distribution.

1.2 Definition of Sorting

First it is necessary to define sorting, and the
limitations involved with it. Sorting, as the word implies, is
the arranging of a set of data into some prescribed order. In

his famous book, Searching and Sorting [KNUT73], Knuth

rigorously defines sorting in the following manner:
Suppose n items are given

9s e Rn

called records, to be sorted in either ascending or descending

Rl’ R

order. The records collectively are called a file. Each

record, R has a piece of information called a key field,

j’

K on which the record is to be sorted.

j?
A linear ordering 1is defined on the keys with two
relational laws. Given three keys a, b, and c:
i) Law of Trichotomy --
One of either
ac<hbh a=> a>b

must be true.

ok €L

ii) Law of Transitivity --
If a<band b < c
then a < c.
Governed by this linear ordering, the goal of sorting is to
rearrange the keys into a permutation

p(l), p(2), ... , p(n)
such that

Kp(1) £ Xp(2) £ =+ £ Kp(n)

The analysis of the various sorting algorithms in this
paper will be concerned with a number of criteria on which a
method's performance may be judged. An algorithm should be
shown to work correctly for all types of expected inputs. The
amount of work done and the amount of storage used should also
be considered. Equally important 1is whether the resulting
program is simple and lends itself to being easily understood,
modified, and debugged. Lastly it should be seen if the method
is optimal; that is, if another method exists which does less
work or uses less space.

For example, consider the optimality of the sorting
problem. We would 1like to know how many comparisons are
necessary to sort a set of n items in a comparison-based
sorting methcd. This means establishing a lower bound for such
methods. For any comparison method, a comparison tree can be
constructed.

Figure 1.1 shows a comparison tree for three items. Each
internal node represents a comparison and the lowest level

5-3

Y

Figure I.1

Comparison Tree

Given Keys:

Al’ A2, A3

1:2:3 3:2:1

Whilia ey

1:3:2 3:1:2 2:1:3 2:3:1

5-4

nodes (leaves) show the possible outcomes. -Note that if we are
given n ijtems to sort, there are n factoriél (nt) possible
outcomes. Hence 3!, or 6, leaves are in tne example tree.

Also note that in any binary tree of height k levels,
there are at most 2k leaves. In comparison trees, tne leaves
are tne possible outcomes of the sort. So:

2" > n! (1)

Let C(n) be the minimum number of comparisons necessary in
the worst case. This corresponds to a path that is followed
down to an outcome, which is just the height «f the tree. So:

k = C(n) (2)
and then
2C(n) >n! ' (3)
Taking the jog2 of both sides
Cln) > Tlog,n: (4)
Approximating this using Stirling's formula gives
logn! =nlogn-n/in2 +1/2 logn *+ a (5)
This shows a lower bound of (n log n) on C(n).

This means that no comparison based method will work in

less than (n log n) comparisons, and that any comparison based

method attaining (n log n) comparisons is considered optimal.

- o - - -

B ekt R ST SRR

Distributive Partitioning Sorting is a union of two classes
of sorts; partition-exchange sorts and distributive bucket
sorts. These classes of sorts will now be discussed, and tnen

DPS will be presented.

1.3 Partition-Exchange Sorting

A number of sorting algorithms use an approach known as
Exchange Sorting. This class of methods uses the idea that if
two keys are found to be out of order, then the records are
exchanged. The position in the file of the elements being
exchanged can also be thought of as being swapped or
interchanged. The exchanging continues until no more pairs are
found to be out of order and the entire file is sorted.

One such exchange sort is called Quicksort. This
algorithm was first presented by C.A.R. Hoare in 1962 in a very
detailed paper, and has been the subject of very close study
[HOAR62]. Briefly Quicksort works as follows:

Given an array Al, A?’ ces An to be sorted
Partition: Position some key, Aj, in its final
position, so that the file is divided into two parts.

A, is the partitioning element. A1l the items in the

J

left subfile Al' A are less than

2’ L]] Aj-l

Aj, and all the items in the right subfile AJ+1,
cee o An are greater than Aj.

Recurse: Now the problem reduces to Quicksorting the
two resulting subfiles until the subfiles have one
element left.

5-6

Algorithm Quicksort is presented in Figure 1.2.

It “is fitting here to walk through an example of
QUICKSORT. Suppose the elements to be sorted are those
frequently used by Knuth.

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

left =1 right = 16
On the first pass through QUICKSORT

part = 503
503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703

e exchange--~---weowe__ J

503 87 154 61 908 170 897 275 653 426 512 509 612 677 765 703
o exchange-----—-— J

503 87 154 61 426 170 897 275 653 908 512 509 612 677 765 703
T

503 87 154 61 426 170 275 897 653 908 512 509 612 677 765 703
leftommom oo i

At this point the final position of the partition element,
503, has been found.

275 87 154 61 426 170 503 897 653 908 512 509 612 677 765 703
----- QUICKSORT————— -~ e QUICKSORT e e

Now QUICKSORT is performed recursively on the two resulting
subfiles. One more pass on the smaller subfile will be
illustrated.

part = 275

275 87 154 61 426 170
imm-j

R ra M rni W b | ohp ik s -

275 87 154 61 170 426
left-——cecee J i

-

170 87 154 61 275 426
—-QUICKSORT-- -Q-

Note that 275,426, and 503 are now sorted.

57 ‘ ;

T oy " e 8 el S . o . —— 1A T ——a—T L W= e £ o1 .-

DEEY

1 v s

The swap operator :s=:

Figure 1.2
Algorithm Quicksort

values of a and b.

1)

2)
3)

4)
5)
6)
7)
8)

9)
10)
11)
12)
13)
14)

15)
16)
17)
18)

is used,

where a :=:

procedure QUICKSORT (left,right)

integer left, right
real array A

if right > left
then do
i = left
j = right+l
part = A(left)

P — R ——

//partition element

/1 Burn the candle at both ends until

/1 the position of the partition element is found

do i = i*1 while A(i) < part & i
do j = j-1 while A(j) > part & j
if j > i then A(1)

end

A(left) :=: A(J)

QUICKSORT(1eft,j-1)
QUICKSORT(i,right)
end if
end QUICKSORT

right
left
= A(j)

5-8

b means swap the

- A

This divide and conquer approach to sorting acnieves
the desired result fairly rapidly. In fact, Quicksort is by
far the fastest sorting method available for implementation
on most computers [SEDG78]. This suggests that an analysis
of the running time of Quicksort is appropriate to explain
why this is so.

The worst case for Quicksort is when the file is
already sorted. This 1is because the partitioning element
being chosen each time results with that element in one
subfile and the rest of the elements in the other subfile.
But suppose a good choice is made of a partitioning element
so that half go to one subfile and half go to the otner. In
each successive pass, the algorithm has two subfiles of n/2
elements to sort. Since the amount of time spent to find
the position of the partition element is 0(n), thne number of
comparisons to Quicksort is then

C{n) < n + 2C(n/2) (1)
Solving the recurrence relation

C{n) < n + 2(n/2 + 2C(n/4)) at nj2

< 2n + 4C(n/4) (2)
< 2n *+ 4(n/4 + 2C(n/8)) at n/a
< 3n + 8C(n/8) (3)
Cln) < kn + 2k C("/7k) (4)
5-9

0.

The time to sort one element is zero

c(1) =0 (5)
so we want to stop at nl2k =1 or 2k = n or

k = 1log n (6)
Substituting (5) and (6) back into (4)

log n

C{n) < nlogn+2 c(1)

0(n log n)

So in a good case Quicksort is O(n log n). A rigorous analysis
of the expécted case shows that Quicksort is also O(n log n)
[BAAS78]. As it turns out, Quicksort performs faster than any
other sort on most machines. This is due to a low constant of
proportionality in the O(n log n). Burv it is also due to some
modifications that ~an be made to the original algorithm. With
these changes Quicksort has evolved to its present day accepted
implementation [SEDC78].

The first modification pertains to Quicksort's worst case
problems. Recall that the worst case is when the file is
already sorted. Thfs paradox arises because on each pass the
partitioning element divides the file into one subfile with one
element and a second subfile with n-1 elements. This yields the
number of comparisons

C(n) = g (k-1) = n(n-1)/2

which fs 0(n2).

5-10

The way to improve this worst case is by choosing a better
partitioning elepgnt on each pass. As it has been seen, it
would be nice if the partition divided the file in half, that
is, if it is the median element. Finding the exact median is
time consuming, although it can be done using 1.5n cbmparisons
in the expected case [FLOY75]. A quick way to get an
acceptable partitioning element is to choose the "median of
three" elements:

A(left) A((left + right)/2) A(right)
where left and right are the upper and 1lower bounds of the
array A. It has been found that this modification not only
improves the worst case significantly, but also wymproves the
average case by 5%. ‘

Another problem with Quicksort 1is in sorting small
subfiles. The algorithm spends much time partitioning,
comparing, and exchanging elements. It seems worth;ﬁile to use
some other sorting method which is more efficient on these
smaller files. The idea is to stop Quicksorting any subfile
with less than some number of elements. The resulting file
then contains a series of unsorted subfiles in their relative
correct order. An Insertion;ort (a simple sorting method) then
completes the sorting by ordering these small individual groups
as it scans through the file. It has been shown that there is
at least a 15% savings when Insertionsort is used on subfiles

with at most 9 items in them.

5-11

com——rges e -

The 1last major problem with Quicksort is that it is
recursive. Recursive procedures run very slow on most
computers. Recursion can be removed by pushing and popping the
left and right endpoints of the subfiles to be sorted on a
Last-In-First-Out stack. If the smaller subfile is sorted
first, it can be shown that the maximum stack depth never
exceeds

log (n+l)/(M+2) where M is the small file cutoff.

If M=9 and a maximum depth of 20 is assumed, then Quicksort can
handle up to 10,000,000 elements: And the sorting is done with
very little extra storage.

With these three modifications, Quicksort's run time can
be improved by a factor of 20% over Hoare's original
algorithm. This version has been implemented by R. Sédgewick
and verified. The Sedgewick implementation of Quicksort will
be used in this thesis work as a benchmark for DPS.

Quicksort still is not free of its problems however. The
algorithm has an unstable property, that is, records with equal
keys do pot maintain their relative order. In most
applications this 1is not a crucial factor, but it 1is an
important consideration when implementing Quicksort. Although
the median-of-three modification is made to improve the worst
case, it 1is nonetheless unfortunate that the worst case is

still 0(n).

5-12

WW

Quicksort's disadvantages are far outweighed by its
advantages. Aside from nheing practical -and extremely fast, it
uses relatively little extra space. With a day or two of
effort, a working version of Quicksort can be implemented. A1ll
things considered, it is hard to beat. The reader is referred
to ([AHO74, BAAS78, GOOD77, HORO76, HORO78, KNUT73, FRAZ70,
GRIF70, HOAR62, LOES74, SEDG78, SING69] for histories and

discussions of Quicksort.

1.4 Bucket Sorting

Depending on the reference, this class of sorts is called
Bucket, Distributive, Radix, or List Sorting [AHO74, BAAS78,
G00D77, HORO78, KNUT73], but the idea is all the same.
Elements are distributed according to the value of their keys
into buckets. Each bucket will be assigned those elements in a
predefined range. Each bucket is then ordered by bucket
sorting recursively or by some other sorting method. Then the
items in the buckets are linked together to produce the final
sorted sequence. |

For example, here are Knuth's numbers again.

503 87 512 61 908 170 897 275 653 426 154 509 612 677 765 703
Suppose 4 buckets are created where the range 0-999 is

evenly divided such that:

5-13

1

Bucket # Values
1 0-249
2 250-499
3 500-749
4 750-999

Then on the first pass

Bucket Heads Links
IR 87 --- 61 --- 170 --- 154 --- ni]
p Jp— 275 --- 426 --- nil
3 - 503 -- 512 -- 653 -- 509 --

612 —- 677 -- 703 -- nil
4 oo 908 --- 897 ——- 765 --- nil

Recursively sorting bucket #1. 4 new buckets are created

Bucket # Values
1.1 0-62.5
1.2 62.5-125
1.3 125-187.5
1.4 187.5-250

Upon distributing

Bucket Heads Links
1.1 —=-==-- 61 --- nil
1.2 —————- 87 --- nil
]
1.3 ccmee 170 --- 154 ——- nil
1.4 e nil

Notice that 61 and 87 are now sorted. Continuing to sort these
! smaller buckets and appending them to one another will yield a
B sorted set of items. Knuth calls this method Multiple List
i i Insertion (MLI).

5-14

[FOET TRy N

Anotnher variation of this method is to create ten buckets
and scan the key's digits from the least significant digit to
most significant digit (right to left) dropping them into the
appropriate buckets as we go along. This is highly known as
the LSD Radix Sort method. For example, here are Knuth's
numbers:

503 87 512 61 908 170 897 275 653 '26 154 509 612 677 765 703
For each successive pass after the first, buckets 0 through 9
are LSD sorted until all three significant decimal places have
been scanned, as in Figure 1.3.

The time to perform this sort is just the number of
significant places, d, times the number of items. So this
algorithm takes dn passes and is 0(n).

Karp has shown that Knuth's Multiple List Insertion is
also O0(n) if the distribution function of the data is
well-behaved [KNUT73,p.105]. Without going into the details,
Knuth also shows that the best case for MLI is when the number
of buckets, M, is equal to the number of items, n, where the
items to be sorted are uniformly distributed. These concerns

will reappear for Distributive Partitioning Sorting.

5-15

1
Figure 1.3 i
LSO Radix Sorting ‘
Bucket Head Pass 1 (ones place) . ‘
0 —mmmmmmme 170 —-- nil
1l —~emmmme e 61 ~--- nil
7 S 512 —=- 612 -—= nil
; J 503 -~- 653 ~== 703 -~- nil
. 154 --- ni)
5 e 275 ~~--765 -~- nil
6 ~w—memeem 426 --- nil
] m=mmmmme e 87 --- 897 —=- 677 --- nil
§ : 908 --- nil
9 e 509 --- nil
Pass 2 (tens place)
1 . 503 --- 703 --- 908 --- 509 --- nil
5§12 ——= 612 -—- nil '
y J 426 --- nil
3~ nil
S nil
| J 653 ~-- 154 ~=- nil
S 61 --- 765 -== nil
y S, 170 —== 275 === 677 -—- ni}
P —— 87 === nil
: . 897 --- nil
Pass 3 (hundredths place)
R 0 —mmmmmmeme 61 --- 87 --~ nil
1l —~cmee - 184 --- 170 --- nil
) 7 275 --- nil
J mmmmeee nil
§ e 426 --- nil
LI 503 --- 509 --- 512 --- nil
I et 612 --- 653 ~-- 677 -~- nil
| R 703 ~-- 765 ~-- nil
o 8 ~—mmmmeeee 897 -~ nil
b . 908 --- nil
| ', 5-16
{
%

. - o

It should be noted that although this method is both
theoretically and practically faster than Quicksort, it uses
much more storage. Recall that Quicksort only needed a
fractional amount of extra space to maintain a stack to
eliminate recursion. Bucket sorts need lots of extra space to
maintain the buckets. The amount of extra space will be
proportional to the number of buckets plus the number of
items. Most implementations use extra space for bucket heads
to show which item is first in each bucket, and for item links
to show which items are in each bucket. The worst case for
bucket sorts is when all but one item goes into one bucket on

each pass. This leads to an amount of work:

n
i =n(n*l)
i=1 2

which is 0(n%).
In discussing bucket sorts, Baase suggests [BAAS78]:

“Thus 1in the worst case a bucket sort would be very
inefficient. If the distribution of the keys is known in
advance, the range o7 keys to go into each bucket can be
adjusted so that all buckets receive an approximately equal
number of keys."

Before introducing LSD sorting, she says:

"The reader might wonder why we don’'t use a bucket sort
algoritnm recursively to create smaller and smaller buckets.
There are several reasons. The bookkeeping would quickly get
out of hand; pointers indicating where various buckets begin
and information needed to recombine the keys into one file
would have to be stacked and unstacked often. Due to the
amount of bookkeeping necessary for each recursive call, tre
algorithm should not count on ultimately having only one key
per bucket, so another sorting algorithm will be used anyway to
sort small buckets. Thus if a fairly large number of buckets
is used in the first place, there is 1little to gain and a lot
to lose by bucket sorting recursively.”

5-17

et aTEE il

These are precisely the issues this thesis will address
with regard to Distributive Partitionfng Sorting. (1t s
interesting to note these comments were published in the same

year as DPS.)

1.5 Distributive Partitioning Sorting

The previous sections were intended to give the reader
enough background to fully wunderstand and appreciate the
advantages and disadvantages of the sorting algorithm about to
be presented.

On the one hand, DPS is an extension of Quicksort. Given
n items, instead of two partitions being created on each pass,
n partitions are created. But the similarity to Quicksort
stops there, because DPS 1is not a comparison-based sort.
Rather, it is a distributive based sort more resembling Knuth's
Muitiple List Insertion, where the number of buckets created
equals the number of items being sorted.

Basically what is done is as follows:

Given n items to be sorted,

Select: Find the maximum, minimum, and median (middle) ele-
ments, all of which can be found in O(n) time.

Partition: Using these values, divide the range of the data
between the maximum and minimum into n (buckets) with n/2
equal intervals on one side of the median, and another n/2
equal intervals on the other side.

Distribute: For each item, determine which of the intervals

it falls into.
5-18

T RN ATy~ wrp o -

Recurse: For each interval with more than one element in it,
sort the bucket using DPS.

The algorithm as originally published by Dobosiewicz in a

pseudo-ALGOL language now follows in Figure 1.4.

In short, here is what procedure SORT does. The items to
be sorted are stored in array A. Line 11 creates a linked list
5 with the i-th item pointing to the (i*l)st in the list. Tne
list end is designated by S(m)=0. The first half of the array
js sorted by calling LSORT(1,0,m). The array is reordered by
procedure MACLAREN which 1looks at the pointers and swaps the
elements around to produce a sorted array A [KNUT73,p.596].
Lines 15 to 18 then complete the sorting on the second half of
the array.

Procedure LSORT does the actual sorting. The array L of
list heads is initialized. This array points to the elements
at the top of the buckets being created. Each of these buckets
can be thought of as baing a Last-In-First-OQut (LIFO) list. As
an element is found to belong to a particular bucket, it is
considered to be the new list head. Its pointer value is put
into the L array and the S array is consequently updated.

Specifically, LSORT works as follows. The bucket of size
n headed by pointer 'link' will be sorted. Step 1 is the
initialization. Line 26 sets up the list heads for n buckets
by initializing them to zero. Next the maximum, minimum, and
median elements are determined. Lines 28 to 31 check for the

case where all items are equal and considers them sorted.

5-19

.

Figure 1.4
Algorithm SORT

procedure SORT(A,n)

integer

begin
real min, max, median

1)
2)
3) arra
4)
5)

n

in
{1

teger m

the declaration of LSORT should be here [/

preparatorypass:

6) FINDMINMAXMED(A,n)

11

FINDMINMAXMED finds the smallest, largest, and
median elements of an array A of length n. These
elements are stored in min, max, median respec-
tively. The array A is partitioned by the median
selection algorithm in 2 halves: A(1:[n/2]) and
A(Tn/2]l +1:n). The Rivest-Tarjan selection algorithm
is suitable for use here [/

m :=(n+l)/2
begin

integer array S(1l:m)
integer i

initialize 1lst:

11)
12)

sorting:

13)

14)

for i := 1 step 1 until m-1 do S(i) := i+l
S{m) := 0

LSORT(1,0,m)

/! LSORT does the sorting. The array S will
contain a list of pointeirs showing the correct
order of elements //

MACLAREN(1,n)

/] to complete sorting, it is necessary to reorder
the input vector A. An algorithm due to M.D.
Maclaren is doing it in linear time. Any other
method could be used //

now sorting of the 2nd half:
initialize 2nd:

15)
16)
17)
18)
19)

S{n) :=0

for i :=1 step 1 until n-m-1 do S(i) := i+m*l

LSORT(1,m,n-m)
MACLAREN(m*+1,n)

end
20) end SORT

5-20

o 2 SN T - - i -

‘

]

st

21) procedure LSORT(1ink,incr,n)
22) integer link,incr,n

/1 LSORT performs a list sort on the elements of array A
pointed at by a list stored in array S. The value of
link gives the head of the list and n is the number
of elements of the list. The parameter incr is a bit
tricky: it is used to distinguish between first and
second halves of the array A. Why s it used?
Because, in order to save storage, there is a one to
one corréspondance between S and the current half of
A: if S{(i) is in the 1list, it me2ns that A(itincr)
is to be sorted in this pass [/

23) begin
24) integer array L(l:n)
25) integer length,i,j,p
N /1 L is used to store pointers to nonempty lists (kept
in S) [/
26) for i := 1 step 1 until n do L(i) := 0
* step 1:
27) LFINDMINMAXMED(1ink,n)

/1 selects the smallest, largest, and median of medians
elements of list starting with S(link) //

28; if min = max then

29 begin

30) for i := link, S(i) while i > 0 do APPEND (i,incr) -
31) end J// this was in case of identical items // '
32) else ;
step 2: g
33; for i := link, p while i > 0 do
34 begin ;
35) p := S(i) . |
36) j = if A(i*incr) < median then ...'else ... !

——— e

/1 a complex expression finding to which group does the
item A(i+incr) belong //

37) S(i) := L(J)
38) L(J) := i

/] item A(i+tincr) is put on top of the LIFO list //
39) end

5-21

|

step 3:

40) for j := 1 step 1 until n do

41) T L(j) > 0 then

42) begin

43) length = -1

44) for i := L(j), S(i) while i > 0 do

length := length + 1

11 compute the length of j-th list.
If more than 1 element, call LSORT again, otherwise
append at the end of sorted part of the vector (a
list kept in S). In actual program the array L
should be compacted first: empty groups should be
deleted. This ensures that a total number of
pointers will never exceed the number of items [/

45) if length > 1 then LSORT(L(Jj),incr,length)

46) else APPENDTL(]),incr)

47) end

48) end LUSORT

5-22

Step 2 is the heart of the sorting. Line 33 is a loop
which will scan down the elements of the bucket headed by the
pointer 'link'. Line 35 saves the value of the pointer to the
next element. The bucket value for that item is then
calculated using "a complex expression” to be discussed 1in
detail later. Line 37 shifts the LIFO 1list for that bucket,
and line 38 puts that item at the head of the list.

Step 3 is the recursive step. All n buckets are scanned
to see which ones need to be sorted still further. Line 44
determines the size of the i-th bucket. Lines 45 and 46 will
call LSORT if there are still items to be sorted, otherwise the
sorted item will be appended to the output array.

To avoid any further confusion, an example follows:

Given Knuth's numbers

1 {2030 alslel 7] 8ol 10l 11]12]13]i1a]15] 16
503[B7{512[61|908|T70(897(275|653 (426 154509 612 [677 [765(703

and that Dobosiewicz's suggested partition formula is used:

if x < median then j alﬂéa?a; Ti;i; . "52 +_ﬂ

co | x - median n-1 , n*l
J max - median ° ? 2

For reasons to be explained, this example will not sort one half

if x > median the

S

first and then the other half, but rather will sort everything
all together.
For the first call of LSORT:
min = 61
max = 908
med: [(n+1)/;] = 9th , so meda512

5-23-

)

T gy

)
i

'_ffy

Array S is a set of pointers éhowing which element is next in
any given bucket. L is an array of pointers showing which
element 1is at the nead of the i-th bucket. Figure .5
demonstrates the sorting procedure.
Items in a bucket are found by the algorithm
for i :=1 ton /| For each bucket
p := L(i) /! List Head
do until p = 0
print A(p)
p :=S(p) /! Next Pointer
end

end

The size of a bucket can be found in a similar manner. By
recursively sorting each bucket of size greater than one, the
sorting process will be complete.

It is easy to see that in the best case this algorithm is
0(n). For perfectly equally spaced data, each bucket would
contain one item after the first pass, and everything is
sorted. Altnough it seems intuitive thnat this algorithm is
0(n) in the average case, rigorously showing so is difficult.
In his original paper, Dobosiewicz shows that the algorithm is
0(n) in the expected case for uniform distributions. The
reader is referred to this paper for details of the derivation

[DOBO78a].

5-24-

Figure I.5

Example of Distributive Partitioning Sorting

i il1l213lalsle]7 8| 9 |10 11 12/ 13 14 19 16
A(i) A 50308751206 19081708972 7566538 26[5450061 2677765703
j ST72131415]617]819] 10111213 14 1516 0
S(i)=L(j) L] O] O0[0[0[O0[0|O0[0[0[0[0[0[0[0[0]0
L(j)=i
i=1 slol3lals|e]7|8]9]10 11 1213 14 15 16 0
A(1)=503 ——deodmdem e oo i T
j=7 t{oflololololo{1]lo|lolo|ojo|o]ofofo
Y L B e B S S R o T
L(7)=1 Bkt 503
i=2 slojolals|e|718(9]10 111213 14 15|16 0
A(2)=87 —odeodo ool L T T T
j=1 L{2|ojojo|o|lof[1]o|o]o|o]lo|ofo|o]o
§(2)=0 —odemdeodo oA o T
L(1)=2 Bkt| 87 503 F
=3 slojolo|ls|s|7]|8]09 1q 11| 12| 13 14 15| 16/ 0
A(3)a512 —odoodo oo AP S O it Epu! N
j=8 t|2]lolofololol1[3]lololololojololo
5(3)80) Bt Gt PR Co s R DR R St DR R Sl SN S SN TR M
L(8)=3 Bkt 87 503512
i =8 slo|lofo|2|6|7]|8]9]|10 11121314 15160
A(4)=61 et R R el L o S R R e e o ekt et Sk ki
j=1 tisalolo|lo|lolof1]|3|o]olo|olo]jo]o]o
S(8)22 ——A-odo o 7L N O e N I S
L(1)=4 Bkt| 61 503512

87

And so on until all the items have been scanned and sorted.

i=16 ili1]2 _%4_4 5 50L7 8lo |1d 11|12|13|14 15| 16
A{16)=703 A [503087512061008170B97¢ 7565326154509 7765703
j=13 STO010]0]21]0[01510[0[0[6[110[91010

S(16)=0 LA 1l 810 ‘IﬁLT? 310013 1416 15 017
L(13)=16 BkE BI[5 75 7650951 BI2E77703 65 BY7
87170 503 553 908

sTzel 212101110112 (T10 01T 2T 111012

5-25

i e——— st — bimaa @ s o 4%

Now consider the worst case. This occurs when for each
half of the buckets divided by the median, n/2 - 1 elements go
into one bucket and one element goes into some other bucket;
Therefore out of n buckets only four get used. The time, T(n),
in the worst Ease is given by the recurrence formula:

T(n) = ¢cn + 2T(n/2?), T(1) ; o
Solving this in a similar fashion as with Quicksort's best case:

T(n) = cn log n +l0(n)
which is 0(n log n).

It has been shown that DPS has a great advantage over
classical comparison-based sorts because it is O0(n) in the
expected case. OPS is also faster because there is no swapping
of elements as in exchange sorts 1like Quicksort, Rather,
linked 1ists are kept, where 1link values are replaced to
reflect the changing bucket statuses. The data values
themselves never move, but instead 1ink values change. In this
way, DOPS is much like Knuth's Multiple Insertion which has many

of the same qualities and characteristics.

1.6 Problems with DPS

There are many problems with DPS in both a theoretical and
practical sense. They vary from fundamental problems with the
algorithm, to large time and space overheads, to theoretically
bad worst case running times. These will be discussed here
with suggested solutions that form the basis for the

implementations developed in this research,

5-26

| NS A v

b e el S 4 i

There are several flaws in the algorithm as originally
published. First of all, it is not necessary to find the
maximum, minimum, and median in the preparatory pass (line 6).

Then there is a logic problem with the divide and conquer
approach used in procedure SORT. The logic divides the array
in half. The first call of LSORT sorts the first half of the
array and the whole array 1is then reordered by procedure
MACLAREN. For example:

SORT(7 8 10 3 6 9 4 11)

LSORT(7 8 10 3)

MACLAREN yields (3 7 8 10 6 9 4 11)

Then LSORT is called for the second half of the array:
(6 9 4 11) . This will yield two sorted vectors.

(3 7 8 10 4 6 9 11)

These now need to be merged to produce the correct ordering.
To correct this problem, LSORT needs to be called only once to
sort tne entire array, and the code for ‘'incr' is eliminated.
Otherwise the two sorted halves need to be merged.

Another problem is the partition formula, restated here:

if x < median

. x-min n-2
Ji= lﬂgdian-min * 72 +.ﬂ
. x-medfan n-1 n+l
else j:= [;;x-medTan e I 2-]

In the else clause, the range of

the

=]

x-median
max-median s (0,1]

5-27

;
}
1
i
;

. . R
B
B S i et ..

which will yield values in the else expression of
+
(P—QI—‘I.nJ
For example, with 16 buckets this formula will give values from.
9 to 16, which is the desired result. It can be concluded that

the else clause is a valid expression.

Now consider the then clause, where the range of

——qianotm is [0,1]
This is inclusive because the median is included in the domain
of the formula. The entire formula will yield values

(1. [ve] 1

For example, with 16 buckets, this will give values from 1 to
8. However, in only one case will these formulas ever yield a
value of 8. That case occurs when the bucket valug for the
median is being calculated. A better choice for the up*l)lzj
th bucket should be made.

This can be done by choosing the then expression

x-min n-2 .
Lledian-minZ - 3 +‘j] for x < median

where min2 = min-0.0000001. So now the range for

(x-min)/(median-min2) is [0,1), and the range for. the then
clause is [1, LD/EJ) . For 16 buckets, this will yield
values from 1 to 7 which is closer but not quite there. Now 8
is missing. It will soon be seen how this problem is solved.

For now, consider the case when n=2 in the then clause.
fFor example, a bucket contains values

(61 87)

5-28

o N> 0 A~ -

Here, FINDMAXMINMED will yield

MAX = 87 MIN = 61 and MED = 61
The median is chosen to be the |£p+1)/3]th (or 1st) element.
Using these values in the then expression will give a zero or
some other small value in the denominator. This can easily be
corrected by choosing the median to be the [Tn+1)12 th
element. So now:

MAX = 87 MIN = 61 and MED = 87
But now upon evaluating the then clause, both elements yield
bucket values of 1. This is because the (n-2)/2 term of the
expression will be zero since n=2. A suggested correction for

this is to evaluate the then clause

which yields integer value: in the range [1, [1n/2)+£l).
So for 16 buckets, the values 1 to 8 will be generated, where
now 8 is included as desired. For odd n, the extra bucket
value will be generated in the then clause.

There is yet a further problem with the then clause.
Consider the case where the median {is equal to or nearly equal
to the minimum. Previously, the concern was that a zero in the
denominator was likely. This might still be the case for an
input vector such as:

(61 61 61 61 87 92)

Here: MAX = 92 MED = 61 and MIN = €1

5-29

ks s ot o

. e .
A —————e . .

ot STV

Again there is the same problem as before. One way to get
around this is to add the code:

if min = median then median := max
This way everything will be evaluated in the thén clause. Note
that the case where the median is equal to the maximum is of no
concern. This 1is because the else clause would never get
evaluated in such a case. But the median
still causes some headaches, as it will soon be seen.

DPS proved to be very slow when implemented as previously
presented. ~ In fact, the running time was 75% slower than
Quicksort on the average. It was obvious tnat to become

ccmpatible with results published in Information Processing

Letters, the algoritahm needed to be optiﬁized as much as
possible. Later publications indicated that a certain amount
of code optimization was being done on tne original ODPS
algorithm.

As pointed out by Lamagna, Bass, and Anderson [LAMAS80],
the <consideration of <constant factors in algorithms is
important, as is the case here. Sloppy code and inefficient
algorithms can be the source of large bottlenecks. pPS
requires the selection of the maximum, minimum, and median
elements. The published version of DPS used a 15n crude median
selection algoritam [KNUT73, p. 216] and it is possible to use
an inefficient 2n method to find the maximum and minimum.

The implementation of bPS in this thesis uses
Floyd-Rivest's 1.5n exact median selection algorithm [FLOY75],
and a 1.5n maximum-minimum selection algoritam; a significant

5-30

-

- i —

savings. This median selection method chooses the exact
median, as opposed to the crude estimate metnod used in the
prior implementation. Although there is still a high overhead
for these algorithms, it is by no means as great as for the
methods originally suggested by Dobosiewicz. The Floyd-Rivest
method uses n extra storage as opposed to n/2 extra for the
suggested method, but the time savings is well worth the extra
space. The reader is referred to [BLUM73, FUSS79, SCHO76] for
more details of median selection.

There are two bottlenecks that arise in DPS as they did in
Quicksort. One of tnese 1is tne problem brougnht about by
recursion. As Lamagna, Bass, and Anderson [LAMA80] point out,
much time and space is used in most impiementations of
recursion. In most cases the overhead can be eliminated by
creating a stack to store crucial values and efficiently coding
some type of outer loop to simulate the recursion. This is
true with DPS also. It has been found by this author that the
recursion can be removed witnout creating extra stacks or using
extra space. This is done by taking advantage of a suggestion
Dobosiewicz makes in Step 3. He states that "the array L
snould be compacted", and this can be done quickly in 0O(n).
The extra available space created by tnis compression allows
room for any needed bucket neads in subsequent levels of
recursion. Everything else being performed with pointers is

done in place, so no extra space is required.

pdditionally, there is the matter of what to do with small

buckets, whicnh is similar to the problem of Quicksort's small

5-31

. —e e

subfiles. At some point it becomes advantageous to use an

efficient: sorting routine on these small buckets rather than

recursively using DPS until the bucket size is 1.

that for DPS, it

It was found
is more efficient to use an Insertionsort on

bucket sizes less than or equal to 9 or 10.

4

Further improvements can be made in the algorithm's run

time by optimizing tne code. It is possible to combine certain

loops in what <can be considered to be the heart of the

algoritnm in Steps 2 and 3. Step 2 performs many common

arithmetic operations repeatedly. These may be removed from

the loop to save time. It is also possible to optimize Step 3

and the code resulting from removing recursion such that a very
tight efficient loop can be implemented.

Unfortunately, there are certain characteristics of the
algorithm that cannot be dealt with. 1t turns out that due to
the nature of the Last-In-First-Out (LIFO) 1lists wused as
pointers for tne buckets, DPS is unstable. Records witn equal
keys may not necessarily be output in the same relative order
in which tney were input. In fact, if an odd number of passes
is made over tne equal keys, tney will be sorted in reverse
relative order. If an even number of passes is made, the items
will be stably sorted. Quicksort also has a stability problem,
although tne reasons fo~ this are entirely different. It is an
interesting phenomenon.

As Baase pointed out, there is a large storage overhead
associated with tnis type of algorithm [BAAS78]. For the
pointers alone, the overnead is 2n, and for the median

5-32

. ma——— s~

e . s

e o

—~— . T

selection it is an additional n. However, with today's virtual
memory environments, the impact of this <consideration is

minimized. Only for extremely large n would problems in

storage occur.

The reader is referred to [AKER78, BURT78, O0ATA78,
DOBO78b, DOBO79, HUTT79, JACK79] for additional arguments
concerning the practical significance of Distributive
Partitioning Sorting which are of little concern to this work.
The OPS algorithm used in this work is presented in Figure 1.6.
Summary of suggested improvements to OPS:

. Delete preparatory pass
. Remove divide-and-conquer approach
. Adjust the partitioning expression
. Handle the minimum = median case
. Remove recursion
Optimize loops
. Multiply by 0.5 instead of dividing by 2.0
. Eliminate mixed mode arithmetic
. Take common expressions out of loops
. Choose the median = (min+tmax)/2

. Use Insertionsort'on small buckets

5-33.

— o —

o m——

Figure 1.6
Algoritnm DPS

procedure DPS(n,A)
integer array L(n),S(n)

integer n,length,i,j,p,link
array A ' o

for i:= 1 step 1 until n do L(i):=0

L{n):=l

for i:=1 step 1 until n-1 do S(i):=i+l

S{n):=0

top:= length:=n

d

while(top < n) !/ Recurse [/
FINDﬁAXMINTL(tOp))

/1 Find max and min of list pointed at by L(top) //
/1 Note: Adaptive methods are placed here [/

link:=L(top)
L{top):=0
if min = max then APPEND(1ink)
else
for i:= link,p while i>0 do

o

3]
e |3
~—

(i
partitioning formula tnat distributes A(i)
=L(J)

-

end
COMPRESS{L,top,n,length)

/]l List neads are pushed to the back of array L such
that the front of the array is all zeroed. top:=
the first non-zero pointer [/

length:=0

for i:=L(top),S(i) while i>0 do length:=length+l
do while (length < Tnsertionsort cutoff)
APPEND(L(top))
L(top):=0

top:=top+tl
if top < n then // Find lengtn of next bucket //
begin
length:=0
for i:=L(top),S(i) while i>0 do
length:=length+l

else exit DPS

5-34

e e e e

[UR SOOI VSR

Having addressed most of the issues raised by Baase

earlier, the adaptive metnods of DPS <can now Dbe

discussed. As it has been shown, the worst case for OPS

is 0(n log n), which is no better than Quicksort on the

average. The question is: Can anything be gained by

knowing sometning about the distribution of thne data in

advanceu And, if so, is it worth it?

5«35

-

CHAPTER I1I
ADAPTIVE METHODS FOR UNKNOWN DISTRIBUTIONS

Recently, work was done by Meijer and Akl [MEIJ80] to try

to "Hybrid" Distributive Partitioning Sorting according to a

known distribution. Though this work is promising, it is by no

means general enough to handle empirical or general
distributions. The authors suggest,

...when the distribution of the input sequence is
not known, anotner topic for future research would be
to study the problems associated with estimating this.
distribution."

When that paper was published, tne proposal for this thesis was
independently being formulated and exactly those ideas were
suggested as a course of tnesis work. (In fact, this author
did not receive the above publication until seven montas after
it was issued, and the thesis work was well into the
experimental stage.)

The purpose of exploring adaptive methods for DPS is to
improve its worst case performance. It is readily seen that as
the dafa distribution becomes more and more skewed, the worst
case is approached. Dobosiewicz shows that the worst case is a
set of factorials. It is desired, then, that these methods be
‘adaptive’' in the sense that they adjust to whatever data
distribution is given.

Recall that DPS divides the range of the data into n
partitions based on the maximum, minimum, and median (or mean)

values. Half of these partitions are all of one fixed length,

5-36

e T B et

U

(r—-

and the other half of another length. For skewed
distribut%ons, the resulting bucket sizes could vary greatly.
It is the goal of the adaptive methods to examine the data
distribution and somehow transform these potentially 1large
sbucket sizes into buckets with as close to one item per bucket
as possible (DPS's best case). Figure II.1 graphically shows
these ideas and concerns.

" The search for various adaptive methods has crossed many
different fields of mathematics, including: linear algebra,
numerical analysis, statistics, probability, combinatorics, and
plain o0ld "horse sense" math, These approaches will be
discussed 1in this section along with their advantages and
disadvantages.

A number of questions arise as these adaptive methods are
being looked at:
What information about the distribution will be
useful?
. How can the information be used to obtain the goal?
Is the information and goal obtained easily and

quickly at relatively little cost?

- - - —— > - - -

In discussing DPS, the term bucket size refers to the
number of items per bucket. Partition length refers to
the length of a partition within the range of the data.

5-37

- ——

Figure II.1

Concerns of Adaptive Methods

hax e ' Max
Find Data Distribution DPS Partitions
‘n n

.DPS Bucket Sizes Desired Bucket Sizes

5-38

T

e e s ——

- - e

II.1 Frequency Distribution Curves

If a small sample of the data is taken and distributed
into buckets, then the bucket sizes can be thought of as being
a set of frequency occurrences. Often this set of frequencies
fits a theoretical distribution such as Unifors, Normal,
Poisson, or Exponential, as shown in Figure 11.2. Many times a
curve can he fit to these frequencies. Usually, the
probabilities of the frequencies are found and a curve is fit
to them. This is known as a Probability Density Curve. By
finding such a curve, it might be possible to find a
transformation to appropriately adjust the partition lengths so
the bucket sizes are more uniform. Some methods . of finding

Probability Density Curves will now be discussed.

I1.1.1 Method of Moments

Variovs statistics concerning distributions can be
gathered such as the mean, skewness, kurtosis, and others.
These are called moments. The moments about the origin for the

elements X{s Xps coen X can be calculated by

According to Elderton and Johnson [ELDE69], if n is the
number of points and m. is the r-th moment, then a frequency

distribution curve can be fit to:

RN

e+ et n el < b

|
Figure 1I.2 }
Frequency Distributions
b—fl/rrrﬂ\n}tlm
Uniform Normal
]
|
! Poisson . Exponential
i
i 5-40
| . e T
f - S '
- > = ae . A__.KZ.A__A‘,_L,L,‘

v v -

-

mipe i b e

1) y = a *+ bx, where

1
a = M

2) y = a* bx + cx?, where

3 3 5 My
2cr Uwmm- e 7)
31 my
b = 4 2n * n

3) y=a+ bx + cxZ + dx3

15 , § my
b=gn (o - 7 -
15 1
c-—?-(-—?—.m
4n n 0
35 3 ™
d-_(_ . —
4n3 Zn n

A system of equations fitting various commonly occurring

distributions were developed by Karl Pearson.

are for curves of the form

2

bo + blx + bzx = 0

5-41

These equations

PR

S s e S e et T

Type 1) If the roots are real and of different sign
™

v=y0(1+;‘—1)

m
2
(1-2)
42
where a = root1 - (distance from origin to mode)
a, = root? - (distance from origin to mode)
and mlla1 = m2/a2
Type VI) If the roots are of the same sign.

m -m
Y = Yo (x - a) 1 . X 2

And so on for other types.

There is also a set of normal curves known as Gram-Chalier
curves which use moments in fitting a curve to a distribution
[GRAM45]. Given a norma! frequency function f(x), and g(x) is

the standard normal function where mean=0, and variance=1, such

that
2,,
g(X) - 1 e b S
Y2«
then

f(x) = g(x) *+ 72 30 + g% o)) +

where Cq = -My = - skewness coefficient
Cq =My - 3 = excess coefficient
Cg = —m5 + 10m3

- +
me 15m4 30
The problem with these moment metnods is that an excessive
amount of time 1is wused 1in determining the moments and

coefficients of the equations. The number of arithmetic

5-42.

B ¥ P L T T VO - . - - -

operations being performed would rapidly become very large.
Although moment methods’ would provide a good guess to the
distribution, they lack the efficiency that is desired for a

modification to DPS.

I1.1.2 Curve Fitting

Anotner way to ‘'discover' the distribution is to try to
fit a curve [DANIBO] to the probability density function based
on the sampled probabilities. The first thought that migat
come to mind is to try a high degree 1least squares fit
[STRA76], such that a tnird or fourth degree polynomial fit.
Although a large number of calculations are needed, it would
not be as great as with the moms -~ calculations, especially if
the number of sampling cells is kept relatively small.

The teast squares fit would work nicely if the
distribution were smooth. In practice, though, many
distributions do not fit smooth, monotonic, or well behaved
curves (i.e., dictionary data, last names, social security
numbers, etc.). Leasts squares methods might yield a badly
fitting curve [GERA78].

Suppose a straight line fit is used between cell
probabilities as shown in Figure I[I.3. For each line, the
slope and y-intercept can be saved and used later to determine
what bucket to adjust an item to. But can tnis practically be
done? Given an item and tnis sample probability density curve,

the item's relative position in the range needs to be found.

5-43

e TP

ey S

Figure II.3

Line Fit to Frequency Probabilities

\n

buckets

5-44

- A ie e

AD-AL1B u14

UNCLASSIFIED

RHODE ISLAND UNIV KINGSTON OEPT OF
ALGORITHMIC COMPLEXITY., VOLUME II.(U
JUN 82 £ A LAMAGNAs L J BASS, L A ANDERSON F30602~79=C~n124
8i=161=-voL=2 : RADC~TR-82=152-y0L=2

COMPUTER SCIENCE =~ETC F/6 9/2 N
)

NL

The only sensible way to accomplish this {is to determine the
probability that an item will fall into the i-th bucket with
respect to the rest of the data. This suggests we need to find
the Cumulative Distribution Function (CDF) as opposed to the
Probability Density Curve (PDC).

The CDF can be found by integrating the POC. The
preprocessing necessary to find the PDC by these prior
techniques would be quite time consuming. A method will now be

suggested to find the CDF quickly and efficiently.

[1.2 Cumulative Distribution Function (CDF) Method

A more useful tool for adaptive methods is the Cumulative
Distribution Function. This was used independently in work
done by Meijer and Akl [MEIJ80] for known distributions. If
f(t) is the Probability Density Curve, then the Cumulative

Distribution Function is
F(x) = fX_ f(t) dt

If the probability, Pis for an item falling into the
i-th sampling cell is given, then the cumulative
probability distribution for the i-th cell is
iv
Py = kEO Pk » Po=0 » Py=1 0<pycl
A useful property of this curve is that it is continuous
monotonic nondecreasing. Fitting a 1line between each

successive pair of sampiing cells should give a good

estimate of the Cumulatfive Distribution Function.

5-45.

e

et A e PR

1 .‘“5}

S
R HC AN

%

&
PR s Xk

3 -

.

It will now be shown that if the cumulative
distribution function is known or can be approximated,
then the resulting transformation of items by this
function is uniform. '

Given:

X is the underiying random variable of the data.

Gy(x) = P(X < x) (1)
is the Cumulative Distribution Function. It is continuous
monotonic increasing so the inverse, Gx°1(x), also
exists.

Y is a random variable where Y = GX(X) is the transform
data. To find the distribution of y, we observe that the

distribution of Y is uniform on [0,1] because

Fyly) = P(¥cy) by def of COF
= P(6y(X) < y) substitution
= P(X ¢ Gx"l(y)) inverse of both sides
= Gx(Gx'l(y)) by def (1)
- y

Therefore the transformation is uniform.

Figure 11.4 shows how the CDF takes any distribution
along the =x-axis and transforms it onto a wuniform
distribution on the y;axisf This implies that if a sample
COF can be found, then the resulting items can be spread
uniformly among the buckets. This is essentially what is

done "in reverse" when a uniform random distribution is
transformed into another distribution in simulation

systems [GRAY80].
5-46

e e e B -2 aa ot R P W PR

. m——— - B . i

Figure II.4
Cumulative Distribution Function

Uniform Transformation

max i

5=47

g

Figure II.5 shows a probability density curve and its
corresponding cumulative distribution function. '

A very simple, practical algorithm can be written using
the idea of cumulative distribution -functiéns to create an
adaptive DPS method.

Step 1) Sample the data and distribute it into cells by

-min
L}? MIJ
where mx2 = max + .0000001 and M is some arbitrary
number of sampling cellis. This formula yields integers
in the range [1,M].

Step 2) 'Find the cumulative probabilities of the M cells.

Step 3) Fit a line between each pair of cumulative
probabilities using PO-O.O and PM=0.9999999. Save
the slope and y-intercept of each line. This yields a
sample Cumulative Distribution Function.

Step 4) Distribute all of the items by first determining
which sample cell it belongs to, say k, and then use
the k-th line equation to find what bucket the item

- ~ really falls into. Note that to insure the COF is
monotonic increasing, as opposed to nondecreasing, each
sampling cell is initialized to have one item. This is
to guarantee the inverse CDF function exists.
. Figure II.6 shows these steps pictorially, and Figure II.7
' describes the algorithm in detail.

5-48

o - e

e e

. e e—— e - =

Figure 1I.5
Sampled Probability Density Curve

and Its Cumulative Distribution Function

11
3
I —
£{x)
11
3
F(x)
5-49
W—u—

-

ooy

[

—

- 4 e ~ e e =

- - =

Figure II.6

The Steps of Algorithm CDE

n4 m
Step 1
T s Ty
min _ max min max
Data Distribution Sample Items into Cells
1t Step 2 14 Step 3
% %
min max min max
Find Cumulative Probabilities Determine Sample CDIF
1 Step_ A4 nt
’ <
2 | - - - — - = - -
|
1
I
{ !
|]
! L
min max n
Distribute Items Resulting Distribution
5-50

o w—— S

§ o R O <t it s s

b

B . P

-~

Figure II.7
Algorithm COF
The following algorithm is placed after FINDMAXMIN in DPS:

integer sample
1f length > sample then

begin /] COF [/
integer k
array CELL(O:m),M(m),B(m)

//CELL -- sampling cells

m -- number of cells

M -- slope of lines

B -- y-intercept of lines [/
FREQUENCY(L(top))

//Take a frequency count of items assuming a
uniform distribution into m cells ranging
from min to max. Each frequency is initially 1./}

CUMPROB(CELL ,m)

//Finds the cumulative probabilities of frequency
cells //

CELL(0):=0.0
CELL(m):=0.9999999
LINEFIT(CELL,m)

//Fit m lines to m*l points. Put slopes into M
and y-intercepts into B !l

for i:=L(top),p while i>0 do

begin
p:=S(1)

. x-min
K:= W . lj +] Ii find c.?n ,I

j:-lir(k) . ﬁ%ig%%if . m* B(k)) . lengiﬂ +1

/] Transforms data into uniform distri-
bution //

St !
end

e i ket s dee e e T

end
else OPS(L(top)) // as usual [/
COMPRESS(L,top,n,length)

3-31

As an example, suppose there is a skewed distribution

like that .in Figure II.6. If there are 100 items being

.distributed into 100 buckets, then note what happens to the

items that would normally have gone in- cell #1. The
cumulative probability for this cell ranges from 0.0 to
027. Therefore 70% of the data falls into cell #1.
Piugging the values of the items belonging to cell number 1
into the first line equation and multiplying by 100 will now
yield bucket values from 1 to 70, instead of 1 to 20 as
would normally have occurred in DPS. This is the result

that is desired from adaptive methods.

I1.3 Ranking Method

Now the queétion arises: Is it really necessary to
find out anything at all about the distribution? 1In fact,
there is a simple method by which to adapt the partition
lengths to a particular data distribution without gathering
information about the distribution itself. This can be
achieved by the following algorithm:

Step 1) Sort a sample of the data by some fast method.

Step 2) Divide the number of items sampled by the number

of cells (m/M), and then choose Partition Endpoints by
selecting every (m/M)th item. Note that M should be of
the form 2k-1 to facilitate the binary search in step 3.
Eo-min-0.000000I. and EM-max.

Step 3) For each item in the file, perform a binary
search to find what cell it belongs in.

5-52

e o

»

—— A

Step 4) Find the bucket it falls in by the expression:

j-(x-Ek-1+k_1) n
B - Fia L

where k is the cell found
£
£

K =" k-th right side endpoint

k-1
n -- number of data points

-~ k-th left side endpoint

M -- number of cells
1f the number of cells and the sample size are kept small and
fixed, then the overhead associated with the binary searching
and sorting will be a fixed constant factor. Figure 11.8
outlines the method.
It is noped that an experimental analysis of these methods
will show that OPS can be improved to handle unknown

distributions.

5-53
QN DS, SRR =

e —— T o —_—

-

P TP PR

'
'
[
h
i
:

e —

.

R

- m—— -

Figure 1.8
Algorithm RANKING

FINDMAXMIN(L(top))

integer sample
if Tength > sample then

begin
integer k)
array E(m
QUICKSORT(sample,RA)

/! Order the sample array RA [/
for i:='1 step 1 until m do E(i):= RA(i . sample/m)

———

/] Get every (sample/m)tn item //

E(0):=min?

E{m):=max

link:=L(top)

L(top):=0

for i:=link,p while i>0 do

begin

p:=5(i)
k:=BINSEARCH(x,E)

Find cell x belongs to by binary searcn //

[_ X- E(k IE v k-1 . engt;1

S(i):=L(])
L(J):=i
end
end
else DPS(L(top)) /1l as usual [/
COMPRESS(L,top,n,length)

5-54

oA e . s+

c mm— o~

CHAPTER II11
EXPERIMENTAL DESIGN AND ISSUES

This chapter 1is intended to describe the issues and
problems in designing appropriate experiments for DPS and the
adaptive methods. It could also serve as a guide for other
researchers conducting work in a virtual machine environment
where algorithm timings are needed. The 1last part of this
chapter describes the reasons for choosing various parameters

used in the experiments.

III.1 Experimental Problems and Issues

There are a number of considerations in designing
experiments to test algorithms. Lamagna, Bass, and Anderson
[LAMAB0] discuss many of these in developing a research plan to
study the performance of algorithms. They note that the
programming language chosen has a large effect on how well a
program will perform. Various compilers will generate widely
different machine code as would be the case for COBOL, FORTRAN,
and PL/I compilers. The University of Rhode Island Academic
Computer Center houses a National Advanced System/5 Model 7031
which is an IBM 3031 equivalent. Due to the advanced features
of the PL/I Optimizing Compiler, PL/I was chosen to code the
aforementioned algorithms. As will be seen, PL/I also contains
some useful compiler options.

The machine chosen to execute on plays a large role in how
fast a given program will run. For example, the floating point

5-35

Ay .

ST

PP

operations on a CDOC machine are many times faster than on a
comparable IBM due to the hardware <configuration of the
machines. Thus it should be noted tnat while one algorithm may
outperform another by a large factor on one machine, this may
not necessarily be true on another. This nas been seen in
previous experiments conducted with DPS [DO0B079].

There now comes a problem common to many fields of
endeavor. And that is, the extent to which one considers the
work of the theorist when putting a concept into practice. In
computer science, this problem is exemplified by the conflict
between theoretical order of magnitudes, and practical
considerations for 1loop control, testing, bookkeeping, and
memory accesses. These latter factors can contribute a high
constant of proportionality to the theoretic order of
magnitude. A (2n log n + 3n) algorithm will, for example,
generally perform better than a (3n log n + 5n) algorithm, even
though they are both theoretically 0(n log n).

This consideration lends itself to the issue of crossover
points, that is, the point where one algorithm begins
outperforming another. For example, a 2n3 algorithm s
better than a 50n2 algoritam for n<25, although "for n»>25 the
reverse it true. It will be seen where the crossover is for
DPS and Quicksort.

Lamagna, Bass, and Anderson [LAMA80] aliso point out that
in addition to these issues, an algorithm can be greatly
improved by various modifications, although the order of
magnitude stays the same. By utilizing clever data structures,

5-56

- b Apa e e e -

e

W

e —

R AL i - P A <2l Rieelbinidehens s an i

loop control, and insignts, an algorithm can greatly improve
its performance as was the case with Quicksort, Another
example of this is the remarkable insight of Dobosiewicz in
transforming O(nz) Bubblesort into an algoritam which
outperforms Quicksort on input sizes less than 2000 [D0B080]:
But while one constant factor may decrease due to a cnange,
another could increase. So the question is: At what point is
cleverness and extra overnead not wortn it? There comes a

point where simplicity may outweigh efficiency.

I1I11.2 Experimental Design

As mentioned, work for this thesis was done on a National
Semiconductor plug compatible IBM computer in 'a virtual memory
environment. Due to paging, cycle stealing, swapping, and load
on tne computer, the run time of two identical experiments
could vary by wup to 25%. Experiments were designed to
eliminate this undesirable "noise" from the run times.
Lamagna, Bass, and Anderson suggested determining weights for
straight line code in an algorithm and then counting how many
times each section was executed,

These estimates could prove to be inaccurate in practice
if they are not chosen carefully. A method of obtaining fairly
accurate run times was used in this work, and will now be
described. The PL/1 compiler used contains a COUNT option
which produces a printout of how many times each statement is
executed. This can easily be simulated in 1languages not
containing this feature. There is also a LIST option which

5-57

[t PPN

s bt e =

generates listings of assembly code similar to the machine code
produced by the compiler. Using instruction timings available
in the IBM System/370 Model 158 Functional Chatracteristics
[18M78], it 1is possible to calculate the timing for each
instruction. Although this is tedious, it does yield accurate
run times. And with some amount of work, this process can be
completely automated. By multiplying the count of eachn
instruction by its timing, and then summing over the entire
instruction set, a good estimate of the algorithm's run time
can be achieved., In addition, the problems associated with job
loads, and virtual paging environments are non-existent.

There now remain a number of variables to be identified
for the experimental design [MYER79].
Irrelevant Variables: System load, virtual memory paging,

swapping, cycle stealing
Independent Variables:

Quantitative: Input size

Qualitative: Distribution type, algorithm used

Fixed: Sample size, cell number, Insertionsort cutoff

Random: Values in the random data file
Dependent variables: Time
Benchmark Model (Controlled Experiment):

Quicksort vs. DPS
Practical Requirements: No array size mhy exceed 32767 in

PL/1, Time is money.

5-58

Experimental Design:
Benchmark Distributive Partitioning Sorting algorithm
against Quicksort, and compare the results to those
published in [DOB079]. The version of Quicksort used is
the Sedgewick implementation, and DPS uses an
Insertionsort cutoff at 9 and a median chosen to be the
mean of the max and min, or midrange, (max*min)/2.

Determine run times using

Algorithms Distributions Input Sizes
DPS (mdrg) Uniform 500
median =
midrange 1000
DPS (median) Normal 5000
exact median
selection 10000
Ranking Poisson 20000
COF Exponential 30000
Analyze

. The effect of a distribution with an algorithm.

. The effect of the input size on an algorithm.

. An algorithm's performance against another

algorithm within a distribution.
Each experiment consists of five runs. The run times and
various percentages are taken from the average of these five
runs. Eacn of the five runs contains different random values
as data.
It should be noted that the Poisson distribution is

continuous as opposed to discrete Poisson.

5-59

© - e

et

Due to the nature of the experimental design, there are
certain constraints on what can be said about the conclusions
to be reached. Esseﬁtially the experiments are simulating the
run time as if the program were being given stand alone time on
an IBM 370/158. In reality, operating system dependent factors
are difficult to measure, and would contribute to the actual
run time. But these have been eliminated in the hope of
producing good relative execution time results.

Since single precision real numbers were used in previous
DPS experiments, they were used here also. Due to the Jlarge
amount of arithmetic operations in DPS, changing the input
stream to integer or double precision could radically change
the timings. Alphanumeric keys would have to be adapted in
some way so DPS could work with them. These are problems wnich

do not occur in comparison-based sorts.

II1.3 Discussion of Fixed Variables

There are three fixed variables that need values assigned
to them. One of these is the Insertionsort cutoff point for
DPS. The optimum cutoff for DPS{mdrg) in the uniform case was
determined by starting with a value of 6 and incrementing by 1
until it was found. A cutoff of 9 or 10 was found to work
best. Since 9 was known to be the cutoff for Quicksort, 9 was
also cnosen as tne cutoff for DPS. It should be apparent that
a different cutoff might be possible for each OPS algorithm,
input size, and distribution. To avoid a lot of extra work to
determine cutoffs for the two DPS methods, and out of fairness

5-60

to DOPS(mdrg) in the uniform case, 9 was wused as the
Insertionsort cutoff in all experiments. This value should
also be optimum for the adaptive methods if they do indeed
transform the distributions to a uniform spread.

Another fixed variable is the number of sampling cells
used in the adaptive methods. The wvalue <chosen for this
variable is closely related to the sample size. The number of
cells and the sample size should be the same for Ranking and
COF out of fairness to each. Ranking has a binary search that
requires that the number of cells be one less than a power of
two. Good values to choose might be 7, 15, 31, 63, and 127.
The higher the number, the more work the 0(log n) binary search
will have to do.

The idea of the CDF method is to sample the Cumulative
Distribution Function. It would be desirable if the cells
could sample statistically good proportions of the range of the
data. If each cell samples a 17 orf 34 proportion, then an
appropriate number of cells can- be-chosen which divides the
range into 1% or 3% intervals. Figure IIl.1 lists the possible
cell proportions.

Figure III.1

Cell Proportions

k Proportions
k # Cells (2 -1) ‘100l1 Cells
3 7 14.29
4 15 6.66
5 31 3.23
6 63 1.59
7 127 .79

5-61

Values of 7 and 15 cells would not divide the range into
small enough proportions to be of much accuracy. 127 cells
would have too large a k value for the binary search. 63 cells
is not close to either 14 or 2¢ and it would be ambiguous to
choose one or the other.

If 31 cells are chosen, the range is roughly divided into
34 proportions. This is small enough to have a good amount of
accuracy, and efficient enough for use in a binary search.

The sample size now needs to be determined. Using
proportional sample statistics and standard normal distribution
tables, a good sample size can be found if 3% proportions of
the data are desired.

Given 3% proportions with .013 error and 90% confidence,
then a good sample size is 469. Since 31*15 is 465, a size of
465 was chosen. This also allows for easy adaptability to 15

cells if there is a large overhead with 31 cells.

5-62

'{',*"

s

e B st e i e e

e ———

CHAPTER 1V
RESULTS AND CONCLUSLONS

IV.l Expectations, Results, and Conclusions

Before the experiments were coenducted, one might
hypothesize certain results to occur. As already discussed,
the adaptive methods should transform an unknown -distribution
into a uniform distribution. 1[It is to be expected that in many
ways, the performance of these methods for skewed distributions
will resemble the DPS methods in the uniform case. The only
exception here would be the run time differences due to
overheads in the adaptive methods.

In the uniform case these methods will be distributing
jtems into buckets, and on the first pass, one might expect a
certain percentage of the buckets to be used. Certainly, all
of the buckets will not get used, and using combinatorial
analysis, the expected percentage of buckets used can be found.

Given one item and n buckets, the probability that the

i-th bucket is empty is

n-1
(=2 (1)
For all n items, the probability the i-th bucket is empty
is
n
n-1
(=1 (2)
5-63

L g o A 1 e BT e

e - -~

e e e =

So the percentage of buckets being used is

P

100 . (1 - (!‘;—1)") (3)
Since

- m———

Lim n-1,"
(2=2)

1
n »w = @ (4)

The expected percentage is

100.(1-—%).-.63.21%

Recall tha! one of the concerns of analyzing algoritnms is ‘
the constant of proportionality of the theoretic order of ’
magnitude. Determining these constants based on tne observed
run times should help determine where crossovers might occur,
that is, at what input size one algoritam begins outperforming ;
another.

Table 1.1 illustrates the Benchmarking results. The Time
Quicksort/Time DPS gives a percentage of how much better DPS is
performing than Quicksort. Comparing results observed with
those previously published in [DOB079], (which appear in the

Expected column) it can be seen that this benchmark of DPS

e e A

outperfeorms previous results except for small sample sizes.

Figure 1IV.1 illustrates these results grapnically. Notice i
there is a crossover wnere DPS begins to outperform Quicksort
somewhere below 2000 items. Sedgewick [SEDG78] noted that the
expected run time of nis implementation of Quicksort would be

proportional to

' 10.6286N l1og N + 2.116N

l 5-64
4
| _ . _— .
i I - . . ’ ‘: LT s e Chw v .n,..-‘,r ——- i .
s] ~—ﬂ-.-------H.-;-liﬁl-Illlll-..ii-.....l

Table 1. Benchmark

Run Time Time Quicksort/Time DOPS
Input Size Millisecs
Quicksort DPS Expected Observed A%
2000 464 .2°% 414.86 1.16 1.12 -.04
5000 1302.88 1036.80 1.24 1.26 .02
10000 2818.94 2051.62 1.27 1.37 .10
15000 4420.06 3108.83 1.28 1.42 .14
30000 . 9413.27 6222.61 1.35 * 1.51 .16
50000 _—— 1.46 1.63 * 17
* estimate _
j
: {
4
; |
RN
5-65 s
r]

- Aan e

Figure 1IV.1 v

Benchmark t
§
run {
time (millisecs) ;
j
J
10500 {
Quicksort
9000 {
7500
6000 T
4500 |
3000 1
1500 T
0 } + + + —_— 4
2 5 10 15 ' 30
input size (thousands)
'f ‘
5-66 .
il
!
o ¥
" T . L T T TR R TS T
h (o]
sasesssestestef st e st ettt sitnadein sstiitnesmbtheionetiin e e

In fact, the run times (in microseconds) observed are
approximétely double this formula.

Since DPS 1is O0(n), one should expect to fit a linear
expression to its run times. For these experiments, the
expression

207N
works very well. To find the crossover point, the equations
are ‘set equal to ane another and solved for N.

2 (10.6286N 1og N + 2.116N) = 207N

Log N = 9.5388

N = 744
which conforms well to Figure IV.1.

Although Quicksort accesses items directly, and OPS
accesses items indirectly tarougn a pointer list, DPS is stil)
faster. In reality, one must consider that as the algorithms
begin recursing, Quicksort will demonstrate a higher cegree of
locality than DPS 1in searching for items, and therefore
generate fewer page faults, As pointed out earlier, this
operating system factor does not play a role in these
experiments,

The first four sets of tables to he presented list results
of how well each algorithm performed on each of the
distributions. It is expected that the DPS methods perform
worse &8s the distributfon becomes skewed, and the adaptive
methods will behave approximately constant. 7

Tables 2.1 = 2.3 show results for DPS where the median is
chosen to be (max+min)/2,

5-67

Table 2.1 is a table of the largest bucket sizes created
on the first pass. The average of the largest buckets from the
five runs and the maximum bucket size out of the five runs are
listed. As expected, the sizes get larger as the distributions
become more skewed.

Table 2.2 shows what percentage of buckets are used in the
first pass through the data. This reflects how efficiently the
algorithm is distributing the data into buckets. A lower
percentage might indicate that the algorithm is doing a certain
amount of recursion to handle the larger bucket sizes being
created. The first column is the percentage of buckets with
sizes greater than or equal to one, and the second column is
for those with sizes greater than or equal to two. As was
expected, ODPS used fewer buckets as the distribution became
skewed. In the uniform case the percentage of buckets used is
around 63.1% - 63.5%. This collaborates well with the expected
63.2% derived earlier. It is slightly higher here due to the
uneven partitioning of bucket intervals as a result of the
median selection and distribution expressions. Interestingly,
the percentage of buckets with at least 2 items did not vary
greatly, whereas the percentage of buckets with at least one
item varied between 16% to 64 % throughout the entire series of
experiments.

Table 2.3 lists the run times observed for DPS(mdrg). The
greatest difference was observed for the skewed exponential
case, as would be expected. The other distributions were
fairly consistent.

5-68

Table 2. DOPS (mdrg) Experiments
Table 2.1

Largest Bucket Sizes

Uniform Normal Poisson Exponential
Avg. Max. Avg. Max. Avg. Max. Avg. Max.
500 4.4 5 7.2 8 6.8 8 9.4 12
1000 5.4 6 8.2 11 7.8 9 12.6 14
5000 6.2 7 9.8 11 9.4 10 17.4 19
10000 6.4 8 9.8 11 10.2 13 18.6 21
20000 6.4 7 10.0 11 10.6 12 21.4 23
30000 7.4 8 10.2 11 10.8 11 23.0 24
Table 2.2
% of Filled Buckets (First Pass)
Uniform Normal Poisson Exponential
g>=] g{>=? 2>=1 I>=2 £>=1 2>=2 l>=E € >u?
500 63.84 26.32 49.68 26.80 49.48 28.08 40.20 22.76
1000 63.70 26.38 48.82 27.00 50.00 27.74 33.74 20.68
5000 63.48 26.33 46.24 27.10 45.16 27.72 30.05 19.42
10000 63.18 26.53 45.37 26.95 42.54 27.33 27.85 18.34
20000 63.28 26.33 45.10 26.98 41.68 27.21 25.99 17.44
30000 63.43 26.38 44.58 26.92 41.63 27.11 24.30 16.64
Table 2.3
Run Times {(millisecs)
. Uniform Normal Poisson Exponential
500 103.65 104.44 104.33 108,22
1000 201.54 208.90 208.55 223.38
5000 1036.80 1043.37 1045.45 1160.49
10000 2051.62 2085.85 2095.75 2369.29
‘ 20000 4144 .05 4170.01 4195.50 4825.32
} 30000 6222.61 6247 .89 6362.22 7159.07
i
‘{
5-69

-

o~

Tables 3.1-3.3 illustrate observations for OPS which
employs the Floyd-Rivest expected time 1.5n exact median
selection algorithm. It would be expected that while the
overall efficiency might improve, there would be a certain
amount of overhead in run times associated with the median
selection.

Overall these tables demonstrate the same characteristics
Tables 2.1-2.3 did. There were two major differences to be
noted. Table 3.2 shows that while there was a tendency for the
algorithm to distribute items 1less efficiently for skewed
distributions, the Poisson data was slightly more efficient
than the normal data. This is because Poisson generated more
buckets with exactly-size 1, and fewer with at least 2, than
the normal case.

The other observation to be made is found in Table 3.3.
For small input sizes, DPS(median) performed better for the
skewed distributions than for the uniform cases. This s
mostly due to fewer buckets that need to be handled for skewed
data. As a result, the algorithm runs slightly better.

Better run times for the normal distribution over the
uniform distribution were not observed, as they were in
[DOBO78a].

In Tables 4.1-4.3, data for the Ranking Method is
presented. A concern for this method 1is that it performs

consistently through the various distributions.

5-70

' o Y AR U €Y S STs SO AT Wt W A Tt

Table 3. OPS(median) Experiments
Table 3.1

Largest Bucket Sizes

Uniform Normal Poisson Exponential

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

500 4.6 5 7.7 9 7.2 9 8.8 11
1000 5.6 6 8. 9 7.8 10 11.6 14
5000 6.2 7 10.0 11 10.0 12 15.0 17
10000 6.6 7 10.0 12 12.0 14 17.6 21
20000 6.8 7 10.4 12 13.8 15 ~19.8 22
30000 7.2 9 10.6 11 12.2 14 21.8 27

Table 3.2
% of Filled Buckets (First Pass)

Uniform Normal Poisson Exponential
$>=1 %>a2 22=1 " g5=2 g>=T g>=2 z>-g g >=0

500 63.24 26.52 50.56 26.96 53.76 25.96 52.88 24.92
1000 63.54 26.48 48.82 27.24 54.32 26.66 49.38 24.14
5000 63.30 26.33 46.25 27.01 651.87 25.68 46.46 23.05

10000 63.31 26.31 45.40 26.96 50.27 25.43 45.76 22.74
20000 63.42 26.37 45.17 26.85 49.80 25.30 44.88 22.14
30000 63.34 26.44 44.58 26.90 49.74 25.10 44.06 21.64

Table 3.3

Run Tiges (millisecs)

Uniform Normal Poisson Exponential

500 145.16 134,40 133.66 139.74
1000 257.47 257.58 254.11 © 270,08
5000 1232.72 1241.65 1240.33 1296.61
10000 2439.84 2454 .,4] 2494.27 2652.15
20000 4823.61 4847 .84 4927.75 5368.40

- 30000 7210.15 7246 ,58 7338.22 - 8171.92

S5-71

PP R4 o ——— 1 -

Tab]g 4.1 conforms well to this expectation. The bucket
sizes did'not vary greatly in the Exponential cases as compared
to the DPS programs. Table 4.2 more vividly shows that the
algorithm is behaving consistently. For each distribution, the
percentages remained fairly constant. The percentage of
buckets with at least one item came very close to the predicted
63.2%. Table 4.3 illustrates that the run times also behave
very consistently. There 1is very 1little run time variance
through distributions. Overall it can be concluded that the
Ranking Method is a valid Adaptive Method for DPS and deserves
further consideration.

Last in this series are Tables 5.1-5.3 for the Cumulative
Distribution Function Method. It can easily be seen in these
tables how well the algorithm performs across distributions.
Each run performs equally well regardless of skewness. This
strongly supports the theory that the sample Cumulative
Distribution Function effectively transforms an unknown
distribution into a uniform distribution.

The next three tables, 6.1-6.3, show the number of second
level passes wusing recursion that were needed for each
experiment. Uniform cases are not lisfed because none of the
experiments ever recursed to the second level. It should also
be noted that none of the experiments ever recursed to the
third level. Two passes on a bucket always sufficed to do the

sorting. ¢

5-72

;
!

Table 4. Ranking Experiments
Table 4.1
~Largest Bucket Sizes

—

Uniform Normal Poisson Exponential
Avg. Max. Avg. Max. Avg. Max. vg. ax.

500 4.2 5 5.0 6 5.4 [4.6 5
1000 6.0 7 6.2 7 5.8 7 7.0 10
5000 6.8 8 8.6 12 9.8 13 9.4 13

10000 6.6 7 9.4 13 12.6 15 10.6 17

20000 7.0 8 10.2 11 14.6 17 13.6 21

30600 7.2 8 10.2 11 15.4 17 14.2 23
Table 4.2

% _of Filled Buckets (First Pass)

Uniform Normal Poisson Exponential
g>=] T>=2 E>=1 %>=2 1>=1 % >=? ’5>-I € >ud

500 63.64 26.68 64.12 25.20 61.88 26.04 63.16 26.88
1000 63.78 25.52 62.26 26.96 62.02 26.86 62.48 25.76
5000 62.57 26.34 61.70 26.20 61.55 26.28 62.02 26.27

10000 62.36 26.48 61.28 26.15 61.20 26.17 61.53 26.22
20000 62.49 26.43 61.16 26.29 61.08 26.18 61.61 26.17
30000 62.49 26.40 60.94 26.40 61.22 26.05 61.51 26.18

Table 4.3

Run Times (millisecs)

Uniform Normal Poisson Exponential
500 257.96 257.94 256.20 258.33
1000 428.78 427.58 425.91 428.30
5000 1789.90 1785.12 1784.10 1788.0?
10000 3485.41 3479.50 3483.73 3487.98
20000 6857 .82 6869.38 6879.54 6889.47
30000 10277.25 10251.06 10273.79 10294.71
$=73

N mewe e e

500
1000
5000

10000
20000
30000

500
1000
5000

10000
20000
30000

500

. 1000
5000

10000

20000

30000

Uniform

Table 5. CDF Experiments
Table 5.1

Largest Bucket Sizes

Normal Poisson

Avg. Max. Avg. Max. Avg. Max.

Exponential

Avg.

Max.

N~ &
SO0
O~NO~N~-NON

)
.
.
.
.
.

% of Filled Buckets (First Pass)

4.6 5.6

.

N~V

. .
SO0
WO NN~
(b BN W NS,

N

OPLBON
OV NNO~

Table 5.2

Uniform
g >=1 g >=2

Normal Poisson
2>=1 % >=2 % >=1 % >=2

408

[N W NE,

OPOLN

OO0 ~NoDODN

Exgonentia]
%>= >=2?

63.92 26.60 64.36 25.92 62.60 26.00
63.32 ?26.66 63.08 26.08 62.08 27.00
62.61 26.20 62.43 26.42 62.21 26.54
62.43 26.17 62.30 26.46 62.25 26.49
62.35 26.30 62.29 26.38 62.13 26.62
62.50 26.27 62.09 26.60 62.08 26.62

Uniform

127.37
234.27
1085.52
2148.87
4274.07
6398.65

Table 5.3

Run Times (millisecs)

Normal Poisson
127.53 127.50
233.86 233.70
1083.71 1084.46
2145.85 2148.11
4265.47 4274.10
6378.67 6399.72
5=74

63.80
63.02
62.23
62.08
62.02
61.89

26.24
26.30
26.34
26.59
26.76
26.74

Exponential

127.46
233.93
1084.25
2147.49
4272.52
6398.81

.t GRS g —

A couple of observations can be made about the nature of
the data presented in these tables. The number of second level
passes is a good indication of how much work an algorithm is
doing. The fewer passes, the less work being performed. The
number of second level passes is a direct result of how well
the data was distributed in the first pass. The results of
these tables compare well with the run times observed in Tables
7.0-10.0.

As expected, the number of second level passes increased
within an algorithm as the data became more skewed. Another
observation 1is that Ranking needed only a small number of
passes, and CDF did not use a second level of recursion except
in one experiment: In this respect, CDF far outperformed the
other algorithms. Again, this further supports the theory of
the Cumulative Distribution Function acting as a uniform
transformation. This is true to a 1lesser extent for the
Ranking algorithm.

The next four series of tables present how the algorithms
performed in any one distribution. These are especially
helpful on showing how the algorithms are competing against one
another.

The first three tables, 7.1-7.3, show the Uniform case.
As can be seen {in 7.1 and 7.2, all algorithms appear to be
performing equally well with respect to the uniform case.
However, Table 7.3 shows the first large discrimination between

the methods. The second column of figures in these run times

5-75

R

Table 6.
DPS mdr
Avg. ax.
500 0 0
1000 .2 1
5000 1.2 2
10000 1.4 4
20000 2.2 5
30000 2.0 3
OPS mdr
Avg. Max.
500 0 0
1000 0 0
5000 .6 1
10000 1.8 4
20000 3.0 7
30000 4.6 7
DPS mdr
Avg. Max
500 1.2 3
1000 7.2 14
5000 69.6 9?2
10000 171.2 258
20000 431.4 519
30000 763.0 786

Number of Second Level Recursions

Table 6.1
Normal

DPS median Ranking COF
Avg. Max. Avg. Max. Avg. Max.

0 0 0 0 0 0
0 0 4] 4] 0 0
1.0 2 .2 1 0 0
1.0 3 .4 1 0 0
2.0 3 1.8 5 0 0
3.4 5 1.4 3 0 0
Table 6.2
Poisson
DPS median Rankin COF
Avg. Max. Avg. Max. Avg. Max.
0 0 0 0 0 0
.2 1 0 0 Q 0
1.2 3 .6 1 0 0
7.6 13 1.8 3 0 0
15.8 25 4,6 7 0 g
24.4 36 6.0 13 .2 1
Table 6.3

Exponential

OPS median Rankin CDF
Avg. Max. Avg. Max. Avg. Max.

1.2 3 o 0 0 0
2.4 5 201 0 0 »
27.0 43 8 3 0 0
74.6 113 2.6 9 °c 0

195.2 237 6.6 23 o 0
351.6 363 11.8 31 o o
5~76 -

I T

T

-

represent the percentage improvement of OPS(mdrg) over the
given algorithm. For example, a 1.19 means that DPS(mdrg) runs
19% faster than the given algorithm jn that experiment. The
conclusion to be reached from Table 7.3 is that as the sample
gets larger, 0OPS(mdrg) is about 16% faster than DPS(median),
65% faster than Ranking, and 3% faster than COF. The Uniform
experiment times are represented graphically in Figure 1IVv.2.
(Since the Normal and Poisson experiments have relatively the
same proportions as Uniform, as seen in Tables 8 and 9, this
graph would be similar in those distributions as well.)

The reason for these time differences can be explained in
the overhead associated with each method as compared to
OPS(mdrg). Formulas can be fit to the run times to approximate
what the constants of proportionality are. These expressions
yield times in microseconds, and fit better as the sample size

increases.

Time (microseconds) Space
DPS(mdrg) 207N 2N
COF 207N + 5.6N + 22600 2N + 3M
OPS(median) 207N + 31.6N + 52000 eN + N
Ranking 207N + 132N + 96255 2N+ M+

N = #items, M = #cells, m = sample size
COF Overhead: Sample frequency, line fits, and
larger partitioning expression
OPS Overhead: Median selection
Rank ing Overhead: Quicksort, Binary search, and
complex partitioning expression

5-77

N N

—-——

500
1000
5000

10000
20000
30000

500
1000
5000

10000
20000
30000

500
1000
5000

10000
20000
30000

Table 7.

DPS mdr
Avg. Max.

NOYOOV N S
« o
LN S

[o NN NN - E)

7.1‘

Table 7.1

Largest Bucket Sizes

Uniform Experiments

DPS median Ranking CDF
Avg. Max. Avg. Max. Avg. Max

NOYOYOVNON

OOV
O NN~V

NNOOOYS
NOOTDON

.
.
.
.
.
L]

Table

7.2

O ~NO~NOD;

4 of Filled Buckets (First Pass)

DPS mdr

g>=1

63.84
63.70
63.48
63.18
63.28
63.43

DPS mdr

7 >=2

26.32
26.38
26.33
26.53
26.33
26.38

g DPS

DPS
Z>=

median
g >=2

Rankin
¢>=1 q >=2

CDF
7>=] g >=2

63.24
63.54
63.30
63.31
63.42
63.34

Run

26.52
26.48
26.33
26.31
26.37
26.44

63.64
63.78
62.57
62 .36
62.49
62.49

Table

7.3

26.68
25.52
26.34
26.48
26.43
26.40

Times (millisecs)

media

103.65
201.54
1036.80
2051.62
4144.05
6222.61

145,

16

257.47

1232.

72

2439.84

4823.
7210.

61
15

Dmdrg

1.40 2
1.28 4
1.19 17
1.16 34
1.16 68
1.16 102

5-78

57.96
28.78
89.90
85.41
57 .82
77.25

R .
%med _gﬂilﬂ%anking

mdrg

2.49
2.18

63.92 26.60
63.32 26.66
62.61 26.20
62.43 26.17
62.35 26.30
62.50 26.27

COF

COF
Dmdrg

127.37 1.23
234.27 1.l16

1.73 1085.52 1.05
1.70 2148.87 1.05
1.66 4274.07 1.03
1.65 6398.65 1.03

—

Figure IV.2

Uniform Experiments

run
time (millisecs)
11000 t
o R
10000
9000
8000 |
DPSm
7000 ¢
CDF
DPS
6000 |
5000 1t
4000
3000 f f
DPS -- DPS(midrange) {
2000 DPSm -~ DPS(median) '
R -- Ranking :
!
1000 CDF -- CDF :
v ., .
0 4+ t —— v M
1l 5 10 20 30

input size (thousands)

5-79

) . e g

i

[

It is here where the importance of constants of proportionality
in orders of magnitude is truly appreciated. Although the
overhead for Ranking is very high due Eo the binary searching
and initial sorting, only about an estimated 20%¥ can be saved
on the run time if a smaller sample size and 15 sampling cells
are used.

It now becomes interesting to see what happens as the data
becomes more skewed. Tables 8.1-8.3 describe the Normal case.
Table 8.1 shows that the adaptive methods have smaller bucket
sizes. Table 8.2 illustrates how efficiently the adaptive
methods distribute the items for buckets with at least 1 item.
The efficiency is better by roughly 15%. Table 8.3 shows that
the run times are in the same proportion as they were for the
uniform case.

Tables 9.1-9.3 illustrate the Poisson experiments. The
results here are much like those of the Normal experiments and
the same conclusions can be reached.

Tables 10.1-10.3 list the results of the experiments with
an Exponential distribution. Table 10.1 shows that the
adaptive methods outperform the DPS methods, and Table 10.2
shows that the adaptive methods distribute items much more
efficiently. However, the major conclusion to be reached is 1in
Table 10.3. For input sizes greater than about 2500, COF
outperforms the DPS{mdrg) algorithm. For 20000 to 30000 items,
it runs about 12¢ better. Figure IV.3 illustrates the data in
Table 10.3.

5~-80

S

Tabl

e 8. Normal Experiments

Table 8.1

Largest Bucket Sizes

DPS mdr DPS median Ranking CDF
Avg. Max. Avg. Max. Avg. Max. Avg. Max.
500 7.2 8 7.2 9 5.0 6 4.6 5
1000 8.2 11 8.0 9 6.2 7 5.6 7
5000 9.8 11 10.0 11 8.6 12 6.4 7
10000 9.8 11 10.0 12 9.4 13 6.8 7
20000 10.0 11 10.4 12 10.2 11 7.8 9
30000 10.2 11 10.6 11 10.? 11 7.4 9
Table 8.2
% of Filled Buckets (First Pass)
DPS mdr OPS median Rankin COF
2>=1 g>=2 g>=1 £>=2 g>xT g>=2 g>=l" ¢>a2
500 49.68 26.80 50.56 26.96 64.12 25.20 64.36 25.92
1000 48.82 27.00 48.82 27.24 62.26 25.96 63.08 26.08
5000 46.24 27.10 46.25 27.01 61.70 26.20 62.43 26.42
10000 45.37 26.95 45.40 26.96 61.28 26.15 62.30 26.46
20000 45.10 26.98 45.17 26.85 61.16 26.29 62.29 26.38
30000 44.58 26.92 44.58 26.90 60.94 26.40 62.09 26.60
Table 8.3
Run Times (millisecs)
0PS mdrg OPS median chking COF
“Dmed ankin CDF
Dmdrg Dmdrg Dmdrg
500 104.44 134.40 1.29 257.94 2.47 127.53 1.22
1000 208.90 257.58 1,23 427.58 2.05 233.86 1.12
5000 1043.37 1241.65 1.19 1785.12 1.71 1083.71 1.04
10000 2085.85 2454.41 1.18 3479.50 1.67 2145.85 1.03
20000 4170.01 4847.84 1.16 6869.38 1.65 4265.47 1.02
30000 6247.89 7246.58 1.16 10251.06 1.64 6378.67 1.02
S-81
- _

500
1000
5000

10000
20000
30000

500
1000
5000

10000
20000
30000

500
1000
5000

10000
20000
30000

Table 9. Poisson Experiments
Table 9.1
DPS mdrg DPS median Ranfing CDF
Avg. Max. Avg. Max. Avg. Max. Avg. Max.
6.8 8 7.2 9 5.4 6 5.6 7
7.8 9 7.8 10 5.8 7 5.2 6
9.4 10 10.0 12 9.8 13 6.6 7
10.2 13 12.0 14 12.6 15 6.4 7
10.6 12 13.8 15 14.6 17 7.4 8
10.8 11 12.2 14 15.4 17 8.0 10
Table 9.2
% of Filied Buckets (First Pass)
DPS mdr 0PS median Ranking COF
£5=1 %>=2 >= >=2 %2>=1 1>=2 %>=1 q4>=2
49.48 28.08 53.76 25.96 61.88 26.04 62.60 26.00
50.00 27.74 54,32 26.66 62.02 26.86 62.08 27.00
45,16 27.72 51.87 25.68 61.55 26.28 62.21 26.54
42 .54 27.33 50.27 25.43 61.20 26.17 62.25 26.49
41.68 27.21 49.80 25.30 61.08 26.18 62.13 26.62
41.63 27.11 49.74 25.10 61.22 26.05 62.08 26.62
Table 9.3
Run Times (millisecs)
DPS mdrg DPS median Ranking COF
Dmed Ranking CDF
Dmdrg mdrg Dmdrg
104.33 133.66 1.28 256.20 2.46 127.50 1.22
208.55 254.11 1.22 425.91 2.04 233.70 1.12
1045.45 1240.33 1.19 1784.10 1.71 1084.46 1.04
2095.75 2494.27 1.19 3483.73 1.66 2148.11 1.02
4195.50 4927.75 1.17 6879.54 1.64 4274.10 1.02
6362.22 7338.22 1.15 10273.89 1.61 6399.72 1.006
5-82

o M o g

— ——

Table 10. Exponential Experiments
Table 10.1

Largest Bucket Sizes

DPS mdr DPS median Rankin CDF

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

500 9.4 12 8.8 11 4.6 5 4.3 5
1000 12.6 14 11.6 14 7.0 10 5.2 6
5000 17.4 19 15.0 17 9.4 13 6.4 8
10000 18.6 21 17.6 21 10.6 17 6.6 7
20000 21.4 23 19.8 22 13.6 21 7.4 8
30000 23.0 24 21.8 27 14.2 23 8.0 9

Table 10.2

4 of Filled Buckets (First Pass)

DPS mdr OPS median Rankin COF
{>=1 %>=2 %>=1 $>=2 I>=1 %>=2 g>=1" ¢>=2

500 40.20 22.76 52.88 24,92 63.16 26.88 63.80 ?26.24
1000 33.74 20.68 49.38 24,14 62.48 25.76 63.02 26.30
5000 30.05 19.42 46.46 23.05 62.02 26.27 62.23 26.34

10000 27.85 18.34 45.76 22.74 61.53 26.22 62.08 26.39
20000 25.99 17.44 44.88 22.14 61.61 26.17 62.02 26.76
30000 24.30 16.64 44.06 21.64 61.51 26.18 61.89 26.74

Table 10.3
OPS mdrq DPS median

Ranking
“Dmed anking CDF Dmdr
Dmdrg mdrg Dmdrg COF

500 108.22 139.74 1,29 258.33 2.39 127.46 1.18
1000 223.38 270.08 1,21 428.30 1.92 233.93 1.05
5000 1160.49 1296.61 1,12 1788.02 1.54 1084.25 .93 1.07
10000 2369.29 2652.15 1,12 3487.98 1.47 2147.49 .91 1.10
20000 4825.32 5368.40 1.11 6889.47 1.43 4272.52 .89 1.13 :
30000 7159.07 8171.92 1.14 10294.71 1.44 6398.81 .89 1.12 { W
? i
{
4
5-83 1
JRPUSIIRR SRS e S S I R L T
) Y

2 v,

e ¢ v ——— i - - o e

Figure IVZ3

Exponential Experiments

run
time (millisecs)
11000/
R
10000 1
9000 |
DPSm
8000 |
DPS
7000 ¢
CDF
6000}
5000%
40001
3000 |
DPS -~ DPS(midrange)
2000 | : DPSm -~ DPS(median)
R ~-- Ranking
1000 | & CDF -~ CDF
0 15 v —t L)
1 5 10 20 30

input size (thousands)

5-84

[. I

TR T

F

Tables 11.1-11.3 demonstrate how well the algorithm run
against DPS(mdrg) across the distributions. It is interesting
to note the consistency of ‘the percentages across
distributions. Tables 11.1-11.3 are illustrated graphically in
Fiqure 1V.4,

IV.2 Summary of Conclusions

The reader may have noticed that up to now experiments
have dealt with various types of distributions, and little has
been done with the worst case. An expunential distribution
exempiifies a typical bad case of data for OFS. Where the
worst case for Quicksort is a realistic sorted set of items,
the worst case for DPS is an impractical set of factorials
[{00B079]. This is by no means a typical case. For these
reasons this author feels that worst case experimentation is
justified only as a curiosity factor, rather than of any
practical importance. The adaptive methods have more than
proved themselves on the skewed distributions given to them as
input.

It was pointed out at thne beginning of this paper that an
algorithm should be measured on a number of criteria. Thus
far, the algorithms have been thoroughly analyzed for
theoretical and practical time and space considerations.
Additionally, they snould be easily understood, implemented,
and maintained. DPS(median) has a very <complex median
selection algorithm, and Ranking has a Tlengthy initial
Quicksort and a cumbersome binary search to execute. The CODFf
algorithm, on the other hand, is quite simple minded in its

5-85

A R e | A A ke PHe W b o 0 YWt TS O At Wil

———-

R AT

Table 11. Run Time Percentages (%%%%—%%%ﬁg)

These tables indicate how much longer it takes an algorithm to
run for thne given distribution as compared to DPS mdrg on that
distribution.

Table 11.1

DPS median
DPSmdrg DPSmdrg DPSmdrg DPSmdrg
Uniform Normal Normal Poisson Poisson Exp. Exp.

500 103.65 104.44 1.29 104.33 1.28 108.22 1.29
1000 201.54 208.90 1.23 208.55 1.22 223.38 1.21
5000 1036.80 1043.37 1.19 1045.45 1.19 1160.49 1.12

10000 2051.62 2085.85 1.18 2095.75 1.19 2369.29 1.12
20000 4144.05 4170.01 1.16 4195.50 1.17 4825.32 1.11
30000 6222.61 6247.89 1.16 6362.22 1.15 7159.07 1.14

Table 11.2
Ranking
Normal Poisson Exponential
500 2.47 2.46 2.39
1000 2.05 2.04 1.92
5000 1.71 1.71 1.54
10000 1.67 1.66 1.47
20000 1.65 1.64 1.43
30000 1.64 1.61 1.44
Table 11.3
COF
Normal Poisson Exponential
500 1.22 1.22 1.18
1000 1.12 1.12 1.05
5000 1.04 1.04 .93 (1.07)
10000 1.03 1.0? .91 (1.10)
20000 1.02 1.02 .89 (1.13)
30000 1.0? 1.006 .89 (1.12)
5-86

- ae

-

P R s o g

Figure IV.4

Run Time Percentages

R

Normal
viewwe POlsson

— —~ —~ Exponential

i
l
f
{

R ~~ Ranking
DPSm —- DPS(median)
CDF -- CDF

input size (thousands)

5-87

R, € S R LAY TR 4 S e e e

L e

R

i aiiie ek e SE S T AT WERF SRS SRS T PPN

approacn, which makes it readily comprehensible. This
simplicity lends itself to competitive run times with OPS(mdrg).

For larger input sizes, the CDF algorithm runs to within
4¢ of DPS(mdrg), and actually outperforms it by 12% in
exponential and more skewed cases. Smaller inputs take only a
fraction of a second to sort, so overhead is not an important
consideration here. MWhen using CDF, we are guaranteed that any
unknown distribution will be sorted as quickly and efficiently
as though it were a uniform case, and the sorting can be done
about as cheaply as the fastest available OPS method.
Therefore, there is little to lose, and possibly something: to
gain, by implementing the Cumulative DOistribution Function
Adaptive Method for Distributive Partitioning Sorting. It is

well worth using.

—-—

N

[y

CHAPTER V
CONSIDERATIONS FOR THE FUTURE

With the Cumulative ODistribution Function adaptation,
Distributive Partitioning Sorting is an extremely efficient and
valuable sorting technique. It easily outperforms Quicksort
and other "fast" sorting algorithms. But there remain a number
of aspects in which DPS may .be even further 1improved, and a

number of areas in wnich it has future implications.

V.1 Modifications

Some modifications <can be suggested to improve the
efficiency of DPS. If DPS(mdrg) or DPS(median) is used knowing
that the data will typically be symmetrically distributed, then
it is not necessary to select a median. All that is needed is
to partition the range into n buckets and distribute the
jtems. The median 1is so close to the mean for thnese
distributions that it 1is not worth finding or wusing. If one
insists on choosing a median quickly, it would be sufficient to
choose the median of a small sample of the data, rather than
the entire data set.

CDFOPS does not choose a median. But 1like the . other
methods, it has an Insertionsort cutoff. For these experiments
Insertionsort was used for bucket sizes of 9 or less. Since
about 63.2% of the buckets are used, it would be practical to

use some fraction of the partitions. This is because many

5-89

LS i bl e A s

...--..llllll-I-lllIllllI!!!IIlIlIIl---------u

buckets with one item can be combined, and still come under the
cutoff, The same basic idea was suggested in [KNUT73,
008079). It would be worthwhile to seg if there is an optimum
number of buckets to use given the cutoff. This could result

in a substantial space savings.

V.2 Implications

As is the case with other sorting algoritams, there is
some question as to whether DPS 1is practical for macnines other
than large mainframes. On microcomputers, if large inputs are
used, the answer is, of course, no, due to memory size
lTimitations and slow processing speeds. But with the recent
advances in mass storage and CPU speeds on micros, it might not
be long before large scale programs become reality on small
computers.

There are practical space problems on minicomputers as
well, which are largely a function of the amount of available
space and the load on the machine. Theoretically there is no
reason why DPS could not be implemented on a mini. In reality,
in addition to DPS's space overhead, there would be many system

- and user dependent factors affecting its performance. At some
point it may become advantageous to resort to an external sort
should system resources become too limited.

It would be very worthwhile to examine adapting OPS to
handle alphanumeric keys. This would be of great practical

concern for the data processing community, since most sorting

in reality is done on name fields of one type or another. The

5-90

—

o

main concern would be to keep DPS fast, simple, and competitive
with other algorithms.

It is fitting here to cite previous work in the
applications of the idea of distributive partitioning. Just as
the basic idea of pértitioning in Quicksort was used by Floyd
for selection, so Allison and Noga have suggested wusing
distributive partitioning in selection [ALLISO]. Van der Nat
has suggested adapting distributive partitioning in binary
herging and merge sorting applications [VAN79, VAN8O]. And, as
mentioned earlier, Meijer and Akl have developed a Hybrid of
DPS which uses a COF for known distributions [MEIJBO].

CDFDPS could be generalized to sort n-dimensioned arrays.
A CDF in n-dimensions is defined to be:

< x,)

Gx(xl,xz,...,xn)zP(X1 < xl,X2 < x?,...,X n

n
Finding cumulative frequency probabilities is easily expanded
to n-dimensions. <ince this function can be considered
monotonic increasing in n-dimensions, the resulting
transformation from one n-dimensional space to another will be
uniform, It should be relatively easy to implement CDFDPS for
multi-dimensioned arrays.

Perhaps another way to wuse the basic idea of COF
distributive partitioning is in hashing applications. An item
can be hashed using distributive partitioning for fast lookup
and retrieval in databases. Collisions could be handled in any

number of ways described in database theory. The hope is that

a very fast and simple mechanism can be developed for information

5-91

g e e A

Ee o TT

s n WM et a

storage and retrieval systems. The hashing process would of

course be 0(1):

V.3 In Conclusion...

Distributive Partitioning Sorting has only recently begun
to receive the attention it deserves. With the Cumulative
Distribution Function adaptation, it can be made to handle all
types of unknown distributions equally well. The space
considerations can also be minimized as can the run times.
Since DPS is practical, fast, and easy to implement, serious
consideration should be given to it by the programming

community as a viable and cost effective sorting method.

5-92

ALLI8O

AKER78

BLUM78

BURT78

DATA78

D0BO78a

D0BO78b

D0BO79

008080

FLOY75

"FRAZ70

BIBLIOGRAPHY
Articles
Allison, D. C. S., and Noga, M« T., "Selection by

Distributive Partitioning”, Information Processing
Letters, Vol. 11, No. 1, (August 29, 1980), pp. 7-8.

Akers, S. B., "Review #33,338", Computing Reviews, Vol.
19, No. 8, (August 1978), p. 326.

Blum, M., Floyd, R. E., Pratt, V., Rivest, R. L., and
Tarjan, R. E., "Time Bounds for Selection", Journal of
Computer Systems Science, Vol. 7, No. 4, (August
1973), pp. 448-461.

Burton, Warren, "Comments on Sorting by Distributive
Partitioning", Information Processing Letters, Vol. 7,
No. 4, (June 1978), p. 205.

---------- ,» "Sorting 30 Times Faster with DPS",
Datamation, (February 1978), pp. 200-203.

Dobosiewicz, Wlodzimierz, “Sorting by Distributive
Partitioning", Information Processing Letters, Vol.
7, No. 1, (January 12, 1978), pp. 1-6.

Dobosiewicz, Wlodzimierz, "Author's Reply to Warren
Burton's Comments on Distributive Partitioning
Sorting", Information Processing Letters, Vol. 7, No.
4, (June 1978}, p. 206.

Dobosiewicz, Wlodzimierz, "The Practical Significance
of 0O P Sort Revisited", Information Processing
Letters, Vol. 8, No. 4, (April 30, 1979), pp. 170-17¢.

Dobosiewicz, Wlodzimierz, "An Efficient Variation of
Bubblesort", Information Processing Letters, Vol. 11,
No. 1, (August 29, 1980}, pp. 5-6.

Floyd, Robert W., and Rivest, Ronald L., "Expected Time
Bounds for Selection" and "Algorithm 489: SELECT",
Communications of the ACM, Vol. 18, No. 3, (March
1975), pp. 165-173.

Frazer, W. D., and McKellar, A. C., "Samplesort: A
Sampling Approach to Minimal Storage Tree Sorting",
Journal of the ACM, Vol. 17, No. 3, (July 1970), pp.
496-507.

5-93

e rn:

FUSS79

GRIF70

HOAR6?2

HUIT79

18M78

JACK79

LAMABO

LOES74

METJ80

SCHO76

SEDG78

SING78

Fussenegger, Frank and Gabow, Harold N., "A Counting
Approach to Lower Bounds for Selection Problems",
Journal of the ACM, Vol. 26, No. 2, (April 1979), pp.
227-238.

Griffin, Robin and Redish, K. A.{ "Remark on Algorithm
347", Communications of the ACM, Vol. 13, No. 1,
(January 1970), p. 54.

Hoare, C.A.R,, "Quicksort", The Computer Journal,
Vol. 5, No. 1, (April 1962}, pp. 10-15.

Huits, Martin, and Kumar, Vipin, "The Practical
Significance of Distributive Partitioning Sort",
Information Processing Letters, Vol. 8, No. 4, (April
1979), pp. 168-169.

---------- , “"IBM System/370 Model 158 Functional
Characteristics", IBM Systems Manual GA22-7011-5,
(September 1978), Appendix B.

Jackowski, Boguslaw L., Kubiak, Ryszard, and
Sokolowski, Stefan, “Complexity of Sorting by
Distributive Partitioning", Information

Processing Letters, Vol. 9, No. 2, (August
1979), p. 100.

Lamagna, Edmund A., Bass, Leonard J., and Anderson,
Lyle A., "The Performance of Algorithms: A Research
Plan", URI Dept. of Computer Science, Technical
Report No. 80-148, (July 1980).

Loeser, Rudolf, “Some Performance Tests of 'Quicksort'
and Descendents", Communications of the ACM, Vol. 17,
No. 3, (March 1974}, pp. 143-152.

Meijer, Henk, and Ak1l, Selim G., "“The Design and
Analysis of a New Hybrid Sorting Algorithm",
Information Processing Letters, Vol. 10, No. 4, 5,
(July 1980), pp. 213-218.

Schonhage, A., Paterson, M., Pippenger, N., "Finding
the Median", Journal of Computer and System Sciences,
Vol. 13, (1976), pp. 184-199.

Sedgewick, Robert, "Implementing Quicksort Programs",
Communications of the ACM, Vol. 21, No. 10, (October
1978), pp. 847-856.

Singleton, Richard C., “Algorithm 347: An Efficient
Algorithm for Sorting with Minimal Storage",
Communications of the ACM, Vol. 12, No. 3, (March
1969), pp. 185-187.

5-94

[

VAN79

VANSO

AHO74

BAAS78

CRAM4S

DANIBO

ELDE6I

GERA78

600077

GRAYS80

HORO76

-

HORO78

L

Van der Nat, M., "Binary Merging by Partitioning”,
Information Processing Letters, Vol. 8, No. 2,
(February 19/79), pp. 72-75.

Van der Nat, M., "A Fast Sorting Algorithm, A Hybrid of
Distributive and Merge orting", Information
Processing Letters, Vol. 10, No. 3, (April 18, 1980,
pp. 163-167.

Books

Aho, Alfred V., Hopcroft, John E., and Ullman,
Jeffrey D., The ODesign and Analysis of Computer
Algorithms, Addison-Wesley, Reading MA, 1974.

Baase, Sara, Computer Algorithms: Introduction to
Design and Analysis, Addison-Wesley, Reading, MA,
1978.

Cramer, Harold, Mathematical Methods of Statistics,
Princeton University Press, Princeton, NJ, 1945.

Daniel, Cuthbert, and Wood, Fred S., Fitting Equations
to Data, John Wiley a Sons, New York, NY, 1980.

Elderton, William P., and Johnson, Norman L., Systems
of Ffrequency Curves, Cambridge Universifty Press,
London, 1969.

Gerald, Curtis F., Applied Numerical Analysis, Academic
Press, New York, NY, 1976.

Goodman, S. €., and Hedetniemi, S. T., Introduction to
the Design and Analysis of Algorithms, McGraw-Hi111,
New York, NY, 19/77.

Graybeal, Wayne J., and Pooch, Udo W., Simulation:
Principles amd Methods, Winthrop Publishers, Inc.,
Cambridge, MA, 1980.

Horowitz, El1lis, and Sahni, Sartaj, Fundamentals of
Data Structures, Computer Science Press, Potomac, MD,
1976.

Horowitz, E11is, and Sahni, Sartaj, Fundamentals of
Computer Algorithms, Computer Science Press, Potomac,

5-95

KNUT73 Knuth, D. E., The Art of Computer Programming: Sorting
and Searching, Vol. 3, Addison-Wesley, Reading, MA,
r9730

MYER79 Myers, Jerome L., Fundamentals of Experimental Design,
Allyn and Bacon, Inc., Boston, MA, 1979,

STRA76 Strang, Gilbert, Linear Algebra and Its Applications,
Academic Press, New York, NY, 197/6.

5-96

ALGORITHMIC COMPLEXITY
Part 6

by
Edmund A. Lamagnat

Edward J. Carney
Purushottam V. Kamat*

EXPECTED BEHAVIOR OF APPROXIMATION ALGORITHMS
FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM
Abstract

The behavior of several approximation algorithms for the
traveling salesman problem is considered when the points are
randomly allocated in the Euclidean plane according to some
known distribution. The expected length of the tour constructed
by an algorithm is estimated from the order statistics of the
distribution of the distance between points. The approximation
methods considered include nearest neighbor, arbitrary insert,
nearest and cheapest insert, and two methods based on finding
the- minimal spanning tree (including Christofides' algorithm).
For the distribution examined, all of the approximations are
shown to produce a tour whose expected length is 0(/n), where n
is the number of points, and at most a small constant factor

(ranging from 25.7% to 87.5%) from optimal.

+ A portion of this author's work was supported by Air Force
Systems Command, Rome Air Development Center, under Contract

* This author's current address is Sperry Univac Corporation,
Salt Lake City, Utan 84103.

6-1

PE 17 S

™

i
%
?
4
I
1
H
2
é

~ =

EXPECTED BEHAVIOR OF APPROXIMATION ALGORITHMS
FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

In this paper, several simple polynomial time approximation
algorithms for the Traveling Salesman Problem (TSP) are analyzed
for their expected performance when the points are distributed in
two-dimensional Euclidean space. This version of the TSP may be
briefly stated as follows.

Given a set of points in a plane, find the minimum
length tour going through each point exactly once.

This problem has a 1long and interesting history, and many
attempts at its solution are surveyed in Bellmore and Nemhauser
[2]. Recently, Garey, Graham, and Johnson [7] and Papadimitriou
[15] have independently shown that the Euclidean TSP s
NP-coﬁplete, and thus it appears that an exact solution to tne
problem for more than several points is computationally
infeasible. As a result, much recent interest has centered
around the behavior of approximation algorithms, or heuristics,
for this problem.

Rosenkrantz, Stearns, and Lewis [17] have investigated the
worst case performance of a number of approximation methods for
the TSP. The tenor of their work is to examine a specific
algorithm and bound the ratio of the length of the approximate
tour it produces to that of the optimal tour. They also attempt
to construct graphs for which the algorithm performs nearly as
badly as this ratio might imply. The best known guaranteed
approximation algorithm for the TSP is due to Christofides [3],

and always finds a tour whose length is within a factor of 1%

times the optimal solution.

6-1

Worst case performance analysis provides a warning to users
of an algorithm how far from the optimum the method might
deviate. Unfortunateiy, results of this nature provide little i
or no insight as to the typical behavior of the method. The i
algorithm with the best worst case ratio does not necessarily
have the best expected one. The expected performance of an
algorithm is usually more difficult to ascertain. One has to i
make assumptions about the distributions of inputs, and
realistic assumptions are often mathematically intractable.

Even the introduction of slightly complex heuristics can lead to
probabilistic dependencies that can be extremely difficult to
analyze.

In this paper, we investigate the expected length of the
solution to an n-point TSP when the points are randomly |
allocated in the plane according to some given probability
distribution. Using techniques from order statistics, we examine
the foTlowing approximation algorithms:

. nearest neighbor method

. arbitrary insert method

. nearest and cheapest insert methods

- minimal spanning tree (MST) based method

. Chrisofides' method
A1l of these methods are found to produce a tour whose expected
length 1s O(/MW). We also bound the expected tour length from
below to show that the algorithms are optimal to within at most
a small constant factor. These results tend to confirm

experimental work in actually using the algorithms [9]. Further-

6-2

more, the results are significant 1in that the worst case
performances of some of the algorithms studied can vary greatly,
as shown by Rcenkrantz, et al [17]. The nearest and cheapest
insert and MST-based methods always produce a tour whose length
s at most twice that of the optimum, but the best known upper
bounds on the worst case ratio for the nearest neighbor and
arbitrary insert methods grow as log n. In fact, it has been
further shown that this logarithmic divergence is unavoidable
for the nearest neighbor algorithm.

Some prior related work has been done on the problem studied
in this paper. Employing techniques quite different from those
used here, Morozinskii [14] has shown that the expected length
of a tour constructed by the arbitrary insert method is 0(v/mn)
and within a factor of 4 of a lower bound on the expected tour
length. His result is quite general in the sense that it does
not assume any specific distribution of points, but only some
weak conditions about the way they are generated. Although our
results apply only to the specific distribution considered, our
bounds yield more concrete information about the actual tour
length. Furthermore, the techniques used in our derivations are
general and could be applied to other distributions.

In two frequently cited papers, Karp [10,11] describes an
algorithm based on dividing the points into a number of small
regfons, constructing an optimum tour within each region, and
then Jjoining the subtours. Although this algorithm is not
guaranteed to find a tour within any specified range of the

optimum, Karp states that the method solves the problem to within

6-3

<

l1+¢ “almost everywhere" for every ¢>0. The success of Karp's
algorithm depends on a theorem (with a long and difficult proof)
by Beardwood, Halton, and Hammersley [l1]. This result states
that the length of the optimal tour through n points in a
bounded plane region of area A is "almost always" proportional
to /nR for sufficiently large n. Weide [18] has recently pointed
out that some confusion exists when interpreting and comparing
such results due to differences in (1) the probabilistic models
under which they are derived, and (2) the measures of convergence
used. The results of Karp and Beardwood, et al are proved within
what Weide calls the *"incremental model® -- i.e., the n-th
instance of the problem differs only incrementally from the
previous one, Our results are proved for the “independent
model1”, in which the n-th problem in the sequence is totqlly
independent of previous ones. Weide has shown that results for
the independent model are stronger in the sense that they
subsume results for the incremental model, while the reverse
does not always hold. Another difficulty with the results of
Karp and Beardwood, et al is that they hold only in the limit as
the number of points tends to infinity, and hence the results do
not speak about moderate (and the usually interesting) values of
n. Our results are derived in a framework that is not plagued
by this difficulty.

6~4

1. ODistribution of Points

OQur objective is to derive theoretical bounds on the expected
lengths of tours constructed by various approximation algorithms
for the TSP when the points are distributed randomly in
two-dimensional Euclidean space. In this paper, we shall assume
that the Cartesian coordinates (x,y) of each point are generated
from a normal distribution with mean 0 and variance az, denoted
N(O,oz). This distribution obeys the statistical assumptions
made in previous work. It was selected to obtain concrete
quantitative results, and because it was quite tractable to
analyze. Although we deal here with the normal distribution,
the analytic techniques themselves are applicable to any
distribution of points that depends only on the origin and
decreases monotonically outside a circle of sufficiently large
radius.

One of the important statistical techniques that we shall use
in our analysis comes from the distribution of order statistics
[5.,6,8]. Let x;,...,x; be a random sample of size m from
some probability density function f(x). We can find the
distribution functions of the order statistics Yiseoes¥ps
where the y,'s are the x;'s arranged in order of magnitude
sO that y;<ys<...<¥p- From the joint distribution of the
Y;'s, other interesting and useful distributions ~- including
those of the maximum, the minimum, and the range -- may be
derived. Specifically, the probability function g; of the
i-th smallest element of {y;} is given by

9,(v) day = a(}]) (FnI' (1R I™) ay

6-5

- - e —— e i i s e i
- ST R R AL e SO IR e e T . S (i AT A 2 e PN

7 O N

where F gives the cumulative density function of the Yi's. In
order to apply this technique to the ‘TSP, it is necessary that
(1) the points should be generated independently from the
distribution, and (2) the distribution of the length of the edge
connecting any two random points should be known. We now derive
this distribution.

Lemma 1: The distribution function of the distance between
two points selected at random from N(0,c2) is

-t2/402

F(t) =1 - e
and the expected distance between two points is E(t) = v¥g.
Proof: Let (xl,yi) and (xp,y,) be the coordinates
of two randomly selected points. Then, the distance z between

them is

_ z = /(71-’(2)2 + (.Yl-)'z)—z
Cramér [5] proves that if

2
W = Z E.i
isl

where the &; are generated from N(0,02), the density of w is

given by

where T denotes the gamma . function. Since (x7-x,) and

(yl-yz) are differences of normal distributions, they are

generated by N(O.Zaz). Substituting ne2, we obtain

6-6

o

1 2 2
f(z) = ,.22 e~2 /40
and hence
t
F(t) = Prob(z<t) = Io f(z) dz
, t 1 - 2%/44° t - 2% /440
; =f, 7.7 ze dz = f -d(e)
- t2/402

!

: =1 -e
! . .
l Furthermore, the expected distance between two random points is

E(t) = f: t f(t) dt

% o 1, - t?ac?
| - ;o 2,2 toe dt = "¥q q.e.d.
{
;
h
6-7

2. Nearest Neighbor Method

The nearest neighbor algorithm for the TSP may be briefly
described as follows.

LY

One of the nodes is arbitrarily selected as the starting

point. Among all the nodes not yet visited, the one that is

closest to the current node is selected as the next to be

visited. After all the nodes have been visited, return to

the starting point.
Rosenkrantz, et al [17] have shown that this algorithm always
constructs an n-point tour those length is at most % logzn of the
optimal, and that there exist graphs for which its tour is % logzn
times the optimal. We now derive the expected path length when
N the coordinates of the points are selected from N(O,oz).

Theorem 2: The expected length of the tour for n points
constructed by the nearest neighbor method, TNN(n), is bounded

from above by

Tun(n) < 2/x o va=1 + 0(vTag n)

Proof: Suppose we start at an arbitrary node A. The
expected length of the first edge in the tour is the minimum of

the n-1 edges joining A to all other points (see Figure 1).

———

n-1 points

A
Figure 1. n-1 edges emanate from an arbitrary point A.

6-8

|

AS n " A - _.m T
. . . .-«—' - iy * x

|

L

The lengths of these edges follow the distribution F given by
Lemma 1 and are independent. By order statistics, the
distribution of g;, the length of the shortest of these n-1
edges, is given by
91(t) dt = (n-1) [1-F(t)]""2 f(t) dt
Thus, the expected length L1 of the first edge is
E(Ly) = Jy t gy(t) dt
e fy t(n-1) [1-F(£)I""2 f(t) dt
= [t(-d[1-F(t)]"-1)
Integrating by parts, we get
E(Ly) =k C[1-F(t)1"1 at

= 'Q) e
- /;dlvn-l
Similarly, the expected lenych of the i-th edge L; added

-(n-1)t2/442
dt

to the tour is the minimum of the n-i edges from the current
node to the remaining wunvisited points. Hence, by the
propertiecs of order statistics and Lemma 1,

E(Ly) = f5 [1-F(£)1™ dt = /So//at
The closing edge of the tour joins the last node added to the
starting point. Denoting its length by Lce' we obtain for the
total tour length

1
Tun(n) = T E(L) + ElL,)

n-1 vxo

- 121 V= E(Lce)
n-1 vzo

- 121 At E(Le,)

6-9

S

-1 V%
S .{n /:: dx + E(L__)
o... X Ce

= 2v/30 A-1 + E(Lce)

Observe that E(L.,) is at most equal to the expected value
of the longest edge joining the starting point A to any of the
other n-1 points (see Figure 1). By order statistics, the
distribution g, _, of the longest of n-1 edges is given by

9p_1(t) dt = (n-1) F(£)"1 £(t) dt
and its expected value by
E(9,_1) = b t gp_p(t) dt € E(Lce).
Gumbel [8, Sect. 6.3.8] shows that this quantity asymptotically

becomes
E(gn-l) = 20 An(n-1) *+ yo/Y/In{n-1)
where y is Euler's constant, v = .577". g.e.d.

To find the expected length of Lces SOmMe authors (18] have
made the simplifying assumption that all points except the one
closest to the starting point are equally likely to be selected
as the last point added to the tour. To our knowledge, the
validity of this assumption has never been formally proven, and
there exists experimental evidence to the contrary [9]. If the
assumption holds, the expected length of the closing edge can be
estimated by the average distance from the starting point to all
points other than its nearest neighbor. As the number of points
increases, this quantity approaches the expected distance
between any two points, which is vso by Lemma 1. This distance,
although 1independent of the number of points n, does not

significantly alter the length of tour bound we have derived.

6-10

3. Arbitrary Insert Metnod

The arbitrary insert algorithm for the TSP operates as follows.
l. Choose any node A as tne starting point, and another
arbitrary point B as the second node to be visited.
Construct the tour going from A to B and back.
2. Randomly choose one of the nodes P not yet visited as
the next point to be inserted. Find the node Q already

in the tour which is closest to P. From the two nodes
adjacent to Q in the tour, select the one R such that

dpq * dpr - doR

is minimal, where djj denotes the distance between

g:;;&st;eazgug: a:ge:gg:;izustgg EE;E?'a??dpgﬁl::eagg

included.
Rosenkrantz, et al [17] have shown that this algorithm always
produces a tour whose length is within a factor of logzn of
the optimal, but it is an open question whether this logarithmic
growth can actually be realized. Using a complicated proof,
Morozinskii [14] has shown that this algorithm constructs a tour
whose expected length is 0(”n) and is within a factor of 4 from
the optimal for a general class of probability distributions
which includes the normal.

Theorem 3a: The expected length of the tour for n points
constructed by the arbitrary insert method, TAI(“)' is bounded
from above by

Tap(n) < 4/x ¢ /n-

Proof: Suppose we have i points in the tour, where i > 2.

The (1+1)-st point P is chosen at random from the remaining set

of n-1 points (see Figure 2).

6-11

e e - —

i

n-1 points

i edges

i points in the tour

Figure 2. P is the i-th point to be 1inserted in the tour.

The expected value of the minimum distance D; from P to the i

points in the tour fis
E(Dy) = fg [1-F(1))' dt = V5 o/7F

We must now compute the cost of adding point P to the tour.
Consider the situation illustrated in Figure 3.
AP

/N
By the Triangle Inequality,

dpq *+ dgr > dpr
2dpq + dqr > dpq * dpRr

2dpq > dpq * dpg - dgr
= cost of inserting P

Figure 3. To insert P, delete edge
QK and add edges PQ and PH.

Hence, the expected cost of inserting P is at most twice

E(Dy), and the total tour length can be bounded from above by
n-1

Tap(n) < 2E(Dy) + 2E(Ly,)

=2

6~12

A Tale aey oo

r
{
1
by

where E(L;o) - /70 is the expected 1length of the random

starting edge in step 1 of the algorithm (see Lemma 1).

Therefore,
n-1 "xg
TAI(") < 2 1§2 %l + 230
n-1 Vo
-2, i
£4v7 ¢ /n1 q.e.d.

The bound of Theorem 3a is quite conservative since it uses
the Triangie Inequality as the basis for estimating the cost of
inserting the new point P. The Triangle Inequality actually
describes the worst case cost of inserting P. Let us examine
each of the three lengths involved in the computation of this
cost, dpg + dpg - dqp, more closely.

By applying order statistics, we determined the expected
value of dpq to be E(Dj), the expected minimum distance from
P to the i points already in the tour. Since point Q appears at
some random spot in the i-point tour being modified, we would
expect dQR to be an average length edge in this partial tour.
Thus, 1if we 1let E(L;) denote the expected 1length of the
{-point tour during the construction, then the expected value of
dor s E(Lj)/1.

Finally, we consider dPR- B8y the operation of the
algorithm, P is known to be closer to Q than R and so dpp >
dpq. By the Triangle Inequality, dpg < dpq * dggr- Just
where dpop' falls in this range is unknown, but a reasonable

assumption might be that the distance dpp is distributed uniformly

6~13.

§ ot v LKA RARD B

IR~ ot 1 s Al
L. RSt

l

between the two limits. This would imply that the expected value of

dPR is dPQ + % dQR’ and that the expected cost of inserting P is

E(L;)] E(Ly) E(L;)

E(dpa*tdpg-dap) = E(D.)*+|E(D,)* - = 2E(D,)-
PQ “PRTTQR (i [(1) 2 J j i 24

Since we have no formal basis for the validity of this
assumption, we will refer to it as the "reasonable insertion
hypothesis”.

Theorem 3b; Under the reasonable insertion hypothesis,
Tat(n) is bounded from above by

Tag(n) <2 ' o /n=T + 0(1)

Proof: From the above discussion, the expected lengtn
E(L1+1) of the (i+l)-point tour 1is equal to the expected
length of the i-point tour plus the expected cost of inserting
the (i+l)-st point P. A recurrence relation describing this

fact is
E(Ljey) = E(Ly) + E(dpq* dpp- dgg)

- L3t (L) + 2e(0))
We are interested in solving this recurrence far
TAI(")'E(Ln)‘ This relation can be solved using the methad
of summing factors, described in Lueker [12]. To do so, we need
an appropriate boundary condition which, from Step 1 of the
algorithm, is E(L,)=2/7 o.
A general recurrence relation of the form

Xje1 = Fyxg * 9y

has solution

6-14

nfz (n-1) o=l
X = n f + + n' f
N7 la ety 3 9 7 9p.1 (1-a RL

where x, denotes the value of x at the boundary condition.
Hence, the solution to our recurrence is
n-2

n-1 n-1
2j-1 2i-1
ey - 3 0 n Yhee(oy) + 2e(D, ;) + (1 SFHE,)

n-2 n-1 n-1
- 2‘ (n 2 -1)_1._ + 2',;6 + (n Zi-l)/-
° L e 5 A /AT ez 2T

Applying the inequality

m .
2i-1
R

we obtain

-2 1
E(Ln) < 2 o nz /1:1' + (2"']7)/-‘;0
/A=T i=2 v/n-T

The desired result follows from the following estimate of the

sum.

T/

1

L YA
n-2
1
< 1+—= | dx
Rl
= (n-1) + 2/n-2 - & q.e.d.

6-15

S 2 PR Y ik Sl %

AR,

4. Nearest and Cheapest Insert Methods

The nearest 1fnsert algorithm operates similiarly to the
arbitrary insert method except that tﬁe next point P to be
inserted into the tour, instead of being chosen arbitrarily, is
selected to be the point not yet in the tour which is closest to
any node already in the tour. (The second point selected is the
starting point's nearest neighbor.) Rosenkrantz, et al [17]
have shown that this method always produces a tour whose length
is at most twice the optimal, and that there exist graphs for
which it performs virtually this badly.

Theorem 4a: The expected length of the tour for n points

constructed by the nearest insert method, Tniln), is bounded

from above by
Tai(n) < 4(2 - Y2) /5 o h-1
Proof: Consider the case when we have i points in the
tour. To get the (i+l)-st point, we take the minimum of n-i
edges connecting each of the i nodes in the tour to all of the

remaining n-i nodes (see Figure 4).

remaining n-i points
1 sets of n-1 edges

i points in the tour

Pigure 4. 1 sets of n-i edges join the ! points
in the tour with the n-1 points not yet 1irzerted.

6-16

[OOSR

e

Observe tnat the expected minimum in i sets of n-i edges is
less than or equal to the expected minimum of the n-i edges
emanating from one of the i points already in the tour. Hence,
by Lemma 1 and order statistics, the expected distance from tne
point P to be inserted to any of the i points already in the
tour is upper bounded by Yo/ /h-1

E(min. of i sets of n-i edges) < E(min. of n-i random edges)

= /xal /=T

Let L' denote the length of the tour constructed through the
first[?}points, and L" be the addition to the length by the re-
mainingL;Jpoints. Then,

Tyr(n) = E(LY) + E(L")
Given the expected length of the i-th edge added to the tour,

our analysis proceeds as in the proof of Theorem 3a. We find

-1
E(L') < Bq{l 2(0,) < 2 /s [ﬂ-l R b L
iml jop 701 i-l?—]*’l A

Now let the tour contain more than rglpoints. Then finding
the minimum of i sets of n-i edges drawn f=om the nodes in the
tour to tne remaining nodes is equivalent to finding the minimum
of n-i sets of i edges drawn from the nodes not in the tour to
the nodes already in the tour (see Figure 4). As before,

E(min. of n-i sets of i edges) < E(min. of i random edges)

= /¥al A
and

n-1 -1

n
.) ;7 L
E(L") < 2E(D,) < 2 A0 A
- [¢] =[¢]

6-17

Hence,

Typ(n) = E(L') + E(L*)
n-1 1 n 1

+

"XL';:I a l-z-l

< 4/70 n-;_?:\ = ¢ 4,/¥c l}m—:r- 2/@7}

= 4(2-v7)/xa/n-1 q.e.d.

< 2/x0

Again, the bound of Theorem 3a is very conservative since it
is based upon using the Triangle Inequality for bounding from
above the cost of inserting each new point. We now wish to
investigate the improvement in tour length under the reasonable
insertion hypothesis introduced in the previous section.

Theorem 4b: Under the reasonable insertion hypothesis,

Tyi(n) is bounded from above by
Typ(n) < 3 /F o AT + 0(1)

Proof: As in the proof of Theorem 3b, the reasonable

insertion hypothesis gives rise to the recurrence relation
2i-1
E(Lyyy) = 7= E(Ly) + 2E(Dy)
This time, the recurrence must be solved twice.
¢ The expected length of the tour through the first [} points is

E(LY) .qu-z E':ll;l %_]; 2E(Di) + ZE(DB_]_I l—?:l 2i-1 E(L2

a2 \ jui*l
where E(Di) and the boundary condition E(L,) are given by

A o 2 /Ao
o E(D,) < and E(L,) =

I R | 2 AT
: 6-18

i

¢

Using the inequality

2i-1 k
1nk $/m
We find that
n
E(L') < 22 Yo [71-2 /i1 272 Yo AT
= Vp-2? LT A Y/ Teene)

i=2
The first of the three terms will dominate, and a good estimate

of this term may be obtained as follows.

oo o [

-1 -
= (n+l) |tan /?\T?-“ m - tan /3_2.7 - n\::i]
< (n+l) [t = 0 - F] = '-2 (n+l)

since mn@ and tan '1,/7‘-_-_?-3 both approach/% rapidly. Hence,

E(L') g—,-"’- u/_“__é + 0(/1)
N-

For the second half of the tour, we must again solve the

recurrence.

r,,,.(n)-m,,)- -E] -},—)zs(o) + 26(0, 1) * (gl,ﬂ“")E(LH)

where E(= E(L'), which we just estimated, serves as the

boundary condition. Applying our usual inequality forR (2j-1)/2]

and remembering that E(01)< “so/ 71 in the second half of the

tour, we obtain

6-19

M e =

PR
'..q.lﬂ"‘

2/5s "5%2 Al , o/x -2 +
E(L) + g + X /vo /n¥l
(n)s ,___I.n- i".%] 1 —jn_ 7 L £} n

Next, we bound the summation in the first term from above by an
integral.

n-2 n-2
+1 < /5—1 dx
i-Zl’%Y—i_ J%—l X
n-2
<,f" 1+-l]dx
3-1 Ve
. %(n-l) + (2-/T)/F=T

The theorem immediately follows by adding together the terms
growing as vn in the sum for E(L,). g.e.d.
The cheapest insert algorithm operates somewhat 1like the
nearest insert method. Again, the next point P to be inserted is
chosen to be the node not yet in the tour which is closest to any
node a]reaQy in the tour.. Point P is inserted by finding the
edge QR already in the tour such that dPQ+ dPR-dQR is minimized,
and deleting this edge while adding PQ and PR. Hence, this
algorithm inserts P at the least costly place. Rosenkrantz,
et a1l [17] have shown that the worst case behavior of this
method is the same as that of the nearest insert algorithm.
Since the tour constructed by the cheapest insert method cannot
be longer than that constructed by the nearest insert method,
the upper bounds of Theorems 4a and 4b also apply to cheapest

insert.

6-20

C o o

!
|
I

5. MST - Based Method

The minimal spanning tree of a set of n points consists of
the n-l edgfs connecting all the points in such a way that the
total length of the.edges is minimized. Lewis and Papadimitriou
[13] and others have shown how to convert the MST into a TSP
tour whose length is at most twice tnat of the optimal tour.
Christofides [3] has further refined this method to produce a TSP
tour whose length is at most 1% times the optimum,to be described
in the next section.

We now proceed to explore the relationship between the length
of the optimal TSP tour, denoted |OPT|, and the length of the
MST, denoted |MST|. Since the optimal TSP tour can be converted
into a spanning tree (not necessarily the minimal one) by
removing one edge, we have

| MsTl < |OPT|
Furthermore,

lopT| < 2 |msT|
and this occurs when all the points are collinear. The validity
of this latter claim will be clarified in what follows.

The tour building technique described in Lewis and
Papadimitriou is based on the observation that the MST can be
converted into a tour visiting all the points by traversing each
edge twice and returning to the origin, as illustrated in Figure
5a. This twice-around-the-tree tour {is then converted into a
legitimate TSP tour by shortcutting any previously visited

points and proceeding directly to the next unvisited point, as

6-21

ieber e foe BB e

a)

shown in Figure 5b. It is easy to see that the length of the
TSP tour produced is. bounded above by twice the length of the
MST.

MST and tour with length = 2|MST].

b) TSP tour based on the

Figure 5.

We now proceed to bound the expected length of the MST from
above using Prim's algorithm [16]. This method for constructing
the exact MST may be briefly described as follows.

Arbitrarily choose any node as the starting point, and
inclyde it in the tree. From among all the nodes not
yet in the tree, select the one that is closest to any
tree node, and add this node and the corresponding edge
to the tree. Continue this procedure until all nodes
are included.

Theorem 5: The expected length of the MST for n points,
LMST(")’ is bounded from above by

Lustin) < 2(2-/2) /7 o /0-T.

Proof: The situation when the i-th edge 1{s added is
jdentical to that for the nearest insert algorithm. To get the
length L, of the i-th edge added, we take the minimum of the
n-i edges connecting each of the i nodes already in the tree to

the remaining n-i points (see Figure 6). As in the proof of

6-22

MST.

SRS AT B

F-&—-- P

remaining n-1i points

1 sets of'n-1 edges
or

n-1 sets of 1 edges

Q)\:g’\, 1 points in MST

Figure 6. 1i(n-1) edges join the 1 points in the
MST with the n-1 points still to be added.

Theorem 4a, for 1 ¢ i ¢ [gj, we have
E(Li) = E(min. of i sets of n-i edges)

< E(min. of n-i random edges)

.o
/=1

We may obtain a better bound for the remaining nodes added by

considering the directions of the edges to be reversed.

Again, !
as in Theorem 4a, ;
E(Li) = E(min. of n-i sets of i edges) %
i
< E(min., of i random edges)
)
T
for L%J +1<1<n-1. Hence,
n
n-1 i] n-1
ﬁﬂ ﬁﬂ
L = E(L < —_— — W
ms(n) = I Eby) < 3 /a=T 1Zn . /7
n-1
< 2) 5;1 g 2(2-/2)/xo/n=-1
4 q.e.d.
6-23-
repw e e e

RO
PR i

R AT]

-———

[

m——— -~

We note that the expected length of the MST can be bounded

from below by
Lust(n) > /% o /AT

using the technique to be described in the proof of Theorem 7a.
This result follows from the observation that the MST contains
n-1 edges, each of whose expected length is at Teast as great as
the expected distance from a point to its nearest neighbor.
Hence, the bound of Theorem 5 is quite tight since 2(2-vV?)=
1.17.

The MST-~based algorithm described above produces a TSP tour
whose expected length, TMSTB(“)’ can be bounded from above by

Tusta(n) < 2Lyst(n) < 4(2-/7)vx o /A<T
In fact, we should expect the length of the TSP tour constructed
to be significantly less due to the shortcutting procedure.
Unfortunately, the geometric and statistical techniques
necessary to obtain a good estimate of this improvement have not

yet been identified.

6-24

e e mm e m e — - am

- ———— T

o e o e eme

-

s

i

- “wiin

- g

6. Christofides' Method

The MST-based algorithm described in the previous section
can be regarded as consisting of four basic steps.

1. Construct the minimal spanning tree.

2. Convert the MST into a multigraph consisting of two

edges for each edge in the MST (e.g., the dotted edges
in Figure S5a).

3. Construct an Eulerian tour of the multigraph produced
in Step 2. An Eulerian tour traverses each of the
edges in a graph exactly once, returning to the origin.

4. Convert the Eulerian tour of Step 3 into a legitimate
TSP tour by shortcutting edges to previously visited
points.

It is well-known that a connected. multigraph contains an
Eulerian tour if and only if the degree of each of its vertices
is even. Such a graph is called an Eulerian multigraph.
Clearly, the procedure of Step 2 ensures that this condition
will be met.

Christofides [3] has discovered another way of converting
the original MST idinto a TSP tour yielding an even better
performance guarantee on the length of the path constructed.
His method is the same as above except that Step 2 is changed to
the following.

2'. Construct the Eulerian multigraph consisting of all the

MST edges plus the edges in the minimal weight matching
on the vertices, of odd degree in the MST.
A matching on a set of 2m vertices V is a partition of V intom
disjoint 2-element sets. Associated with the matching is the
set of edges P for each 2-element set {P,Q}. The minimal weight
matching on V 1{is the one 1in which the total sum of f{ts

associated edge lengths is smallest.

6-25

et it W ho s aee s S s

a)

The operation of Step 2' §s illustrated in Figure 7. Since
the matching adds one new edge incident with each vertex of odd
degree in the MST, all of the vertices in the multigraph are of
even degree and the existence of an Eulerian tour is guaranteed.
Furthermore, the perfect matching must exist since the number of
vertices of odd degree in the MST is even, according to another

well-known result from graph theory.

MST, odd degree vertices circled. b) Minimal odd vertex matching added.

Figure 7.

We now explore the relationship between the lengths of
Christofides' tour (denoted [CM|), the minimal odd matching
(denoted |[MOM|), the minimal spanning tree (|MST}), and the
optimal TSP tour (IOPT|). Since the length of the Euclidean
tour constructed in Step 3 equals |MST| + |MOM|, we have

lcMl < |msTl + |moM|
We observed in Section 5 that |MST| < |OPT|. It also turns out
that |MOM| < } |OPT]. Thnis occurs because the optimal TSP can be
converted into a tour T through the vertices of odd degree in the

MST by shortcutting any edges passing through the even vertices.

6-26

‘f

Clearly, |T| < |OPT|. Furthermore, T contains two matchings on
the odd vertices, formed by taking every other edge, and the
length of the shorter of these cannot exceed %|OPT|. (See

Figure 8.) We conclude that
3
ICM| < v d |OPT|
Cornuejols and Nemhauser [4] have further shown that this bound

ifs tight by exhibiting finstances of the problem for which the
algorithm performs this badly.

LS

Figure 8. Optimal TSP tour with odd degree vertices in MST circled.
Shortcut tour through these vertices contains two matchings.

QPN VIPRVE RPINE |

The expected length of the tour produced by Christofides'

algorithm can be bounded above by the sum of the expected
lengths of the MST and MOM. Since we already considered the
length of the MST in Section 5, we turn our attention to the
problem of determining the expected length of the matching. The
number of points participating in the matching varies from one

problem instance to another. All n pofints participate in the

worst case, although we would anticipate this situation to arise

6-27

L. L4,
e e

only rarely. Unfortunately, we do not know of any techniques
for determining the expected number of points in the matching,
and this remains an interesting open gquestion.

Another difficulty arises in estimating the expected length
of the minimal matching. A1l of the algorithms studied so far
adhere to the "greedy" design paradigm. That is, they make a
series of decisions on how to proceed based on finding the
smallest edge with a certain property. Order statistics lends
itself nicely to examining the expected behavior of such
procedures. However, we know of no such greedy algorithm for
the optimal matching. Instead, we shall bound its expected
length from above by analyzing a greedy matching heuristic .which
does not, in general, produce the best match. This method
operates as follows.

Randomly select a point and pair it with its nearest

neighbor. From the remaining n-2 points, randomly select

one and pair it with the nearest unmatched point. Repeat
the procedure n/2 times, when all points will be paired.

Theorem 6: The expected length of the matching for n points
constructed by the greedy matching heuristic, LGM(“)’ is
bounded from above by

Lgun) < v o/n=T

Proof: At the i-th iteration of the algorithm, the point P

selected randomly is paired with one of the n-2i+1 remaining

points. From order statistics and Lemma 1, the shortest of the

n-2i+1 edges joining P to the unpaired points has expected length

E(Ly) = A
n—

6-28

Amwrah oma—— -

P R e et

Hence, the expected length of the entire matching is given by

-1
n/?2 ni?2
1
Lay(n) = E(L,) = Ko &, —L __+
GM i);l 1 i§.1 Jnozy+1 igl Jn=23+1
n/2
dx
£ /7 f —_t]
7 [1 /n-2j+1
= ﬂ g fm goecdo

An obvious improvement on the greedy method is to pick the
shortest edge among any of the remaining points at each step.
Because of statistical dependencies between the edges, we cannot
say anything significant about this technique. However, we can
content ourselves with the following interesting fact. Although
the 1length of the matching produced by our simple greedy
neuristic can be quite bad, its expected value is witnhin a
factor of two of the expected length of the minimal matching.
To see this, observe that the expected length of the minimal

matching on n points, LMM(“)’ can be bounded below by

Luw(n) 2 522 2 3 /7 o/

since the matching contains % edges, each of whose expected length
is as great as the expected distance from a point to its nearest
neighbor,. A general discussion of such Tower bounding
techniques for the TSP follows in Section 7.

Suppose cn points participate in the matching, where the
fraction ¢ s such that 0 ¢ ¢ < 1. Then, as a corollary to

Theorem 6, the expected length of the TSP tour constructed by

6-29

PP

PPV PRNVERN

ARt YRR
A A e -

Christofides' algorithm, TCM(n),‘can be bounded above by

Lust(n) *+ Lgu(cn)
2(2-v2)/x a/n-1 + /X /v o/n-e-[

Ia

Tew(n)

in

In the worst case c=1, yielding a bound of

Tem(a) < (5-272) /% o/n-1

Under the reasonable assumption that half of the points are of
odd degree in the MST, c-% and

Teu(n) < (4-34) /3 o /371
As in Section 5, a better estimate of the savings resulting from

us to sharpen these

the shortcutting procedure would enable

bounds.

6-30

o e g ———

A P Ao OUPERE = =

if

7. Lower Bound on Optimal Tour Length

Theorem 7a: The expected length of the optimal tour througn

n points, Topt(n), is bounded below by
TOPT(D) 2 vz o /ﬁ

Proof: Consider an arbitrary node in thne graph. The
expected distance to its nearest neighbor is given by the
expected length of the minimum of the n-1 edges connecting the
node to all the other nodes in the graph. Using order
statistics, we have already seen

/1 o

E(distance to nearest neighbor) =
N

Since the expected length of each of the n edges in the optimal
tour is at 1least the expected distance from a vertex to its
nearest neighbor, we have

z o

N=

TOPT(") >n 2V o /n q.e.d.

A better lower bound can be derived by noting that exactly
two edges are incident with each point in any tour. In the proof
of Theorem 7a, we observed only that the expected length of the
shorter of these edges 1is at Jleast as great as the expected
distance from a point to its nearest neighbor. But the longer
of the two edges emanating from a point has expected length at
least equal to the expected distance from a point to its second

nearest neighbor. Using this observation, we now derive a better

lower bound.
Theorem 7b: The expected length of the optimal tour through
n points, TOPT(")’ is bounded below by

6-31

WSS o s - o AR ——— o b e e, iy

c emmea e e

i A

Proof: Let Dy and Dy denote the distance from a point P
to its nearest and second nearest neighbors, respectiveiy.

Attributing half of the length of any tour edge to each of its

endpoints, we have
Tapr(n) [l E(D;) + 1 E(D,)]
oPT 2N 17 i ? 2

As in Theorem 7a, E(Dy) « /¥ of /n-1. The distribution gz of
the second shortest of the n-1 edges incident with a point P is

given by order statistics to be

9,(t)dt = (n-1)(n-2)F(t)[1-F(£)1""3 £(t)dt

and its expected value is

E(D,) = ot 95(t)dt

. 2 2 2 2{n-3 _1_ _2 2
- .rot(“"l)(ﬂ-Z) l-e't /4°][e-t /4°] 202 te t%/40 dt

- (n-lzén-zz [ﬁ;tze-(n—Z)tzl4a2dt _ L;tze-(n-l)tzlagzd;]

20
(n- !‘ n-2) /= [}40)3/2 4a)3/5]

/v o
[/Fz.fh':r

1
+ -
" [}EZZ /AT /A% + /o

3 Yz o
27
/n=1
Hence,
Topr(n) 2 § n [E(D) * E(Dy)]
2 % /s o /T q.e.d.

6-32

This states that the optima)l tour, no matter how it is con-
structed, will have an expected length of at least % vx ov/n. This
is significant in that all of the algorithms discussed above
produce a tour whose length is within a small constant factor of
this lower bound. This factor ranges from a low of 25.7% for the
nearest insert algorithm under the reasonable insertion
hypothesis to a high of 87.5% for the MST-based method. As
mentioned in Section 4, the cheapest insert method performs at
least as well as nearest insert.

Using different techniques, Morozenskii [14] nas shown that
the asymptotic expected length of an optimal tour is proportional
to /n for any probability density wnich depends solely on the
distance from the origin and is monotonic outside some circle of
sufficiently 1large radius, and not merely for a normal
distribution. Morozenskii's derivation is based wupon the
expected distance from a point to its nearest neighbor, rather
than both this distance and that of a point's second nearest
neighbor. A related result by Beardwood, et al [1] states that
the length of the shortest closed path through n points in a
bounded plane region of area A is “"almost always" proportional

to vnA for sufficiently large n.

6-33

e A S o

e | e - ae o

8. Summary and Conclusions

The famous traveling salesman probleq of operations research
is NP-complete, even when the points are restricted to the
Euclidean plane [7,15]. Because of this apparent computational
intractability, one must resort to the use of approximation
algorithms which, in general, produce suboptimal tours. Previous
research has focused on the worst case behavior of such
approximations [17,3,4]. Such results tend to be overly
pessimistic since worst case data seldom, if ever, is encountered

in practice. Furthermore, one may still expect most reasonable

approximation methods to perform about equally well on random.

inputs, even though the worst case performances of the
algorithms may vary greatly. Experience in working with several
approximations tends to confirm this hypothesis [9]. The primary
motivation for this work is to provide a theoretical basis for
explaining this intuition and experience.

In this paper, we applied the methods of order statistics to
estimate the expected lengths of the tours produced by several
approximatfon schemes for the Euclidean TSP. To do 30, we
selected one speciftc distributidn of points for extensive study.
A primary reason for choosing the. two-dimensional normal
distribution was that it proved to be mathematically tractable.
Furthermore, this distribution conforms to all of the statistical
assumptions made in prior investigations, and the o(/n) tours
produced are also in line with previous work [1,14]. Hopefully,
tﬁe distribution 1is typical of this class so that one might
expect somewhat similar results to hold had a different choice
been made.

6-34

Our principal conclusion 1is that for the distribution
chosen, all of the approximation algorithms studied produce a
tour whose expected length is within a small constant factor of
optimal. One' line of possible future research would be to
investigate the variance in path length associated with the
algorithms, again using order statistics. A low variance would
tend to enforce our belief in the algorithm's ability to produce
generally good tours, whereas a high variance would make us more
skeptical of the method. Another possible line of investigation
would be to extend the results to other specific distributions
or, better yet, to general classes of distributions obeying
certain statistical assumptions.

Perhaps the most important contribution of this work is to
show how order statistics can be applied to say significant
things about the expected behavior of heuristics for the
Euclidean TSP. There is no reason why these techniques could
not be applied to other computational problems, as well. One way
of coping with the apparent intractability of NP-complete
problems 1is to devise fast procedures which approximate the
optimal solution. To date, most research has focused on
deriving worst case performance guarantees for these methods,
while very 1little is known about their expected performance.
Since many of these approximations can be characterized as
“greedy"”. algorithms (i.e., they minimize or maximize some
criterion at each step), they would be good candidates for the
application of order statistics provided it {s possible to
characterize reasonably the distribution of inputs. Further
explorations of this type could be most useful and interesting.

6-35

Ak SR e Rt L

g Srbwtver . o, A st

—— e
PN

(1]

[2]

(3]

(4]

[s]
(6]
(7]

(el
(9]

(10]

[11]

(12]

(13]

References

J. Beardwood, J. H. Halton, and J. M. Hammersley, “The
Shortest Path Through Many Points®, Proc. Cambridge Phil.

Soc., Vol. 55, No. 4 (Oct. 1959), pp. 299-327.

M. Bellmore and G. L. Nemhauser, “The Traveling Salesman
Problem: A Survey", Oper. Res., Vol. 16, No. 3 (May 1968),
pp. 538-558.

N. Christofides, “Worst Case Analysis of a New Heuristic
for the Travelin Salesman Problem", Technical Report,
Graduate Schoo of Industrial Administration,
Carnegie-Mellon Univ. (1976).

G. Cornuejols and G. L. Nemhauser, *Tight Bounds for

Christofides’ Traveling Salesman Heuristic", Math.

Programming, Vol. 14, No. 1 (Jan. 1978), pp. 116-121.

H. Cramer, Mathematical Methods of Statistics. Princeton
Univ. Press, Princeton, NJ, 1958.

H. A. David, Order Statistics. John Wiley and Sons, New
York, 1970. .

M. R. Garey, R. L. Graham, and 0. S. Johnson, “Some
NP-Complete Geometric Problems"”, Proc. 8th Annual ACM Symp.
on Theory of Computing (1976), pp- IU-ZZ.

E. J. Gumbel, Statistics of Extremes. Columbia Univ. Press,
New York, 1958

P. V. Kamat, “Expected Behavior of Approximation Algorithms
for the Euclidean Traveling Salesman Problem®, M.S. Thesis,
Univ. of Rhode Island (Aug. 1978).

R. M. Karp, *The Probabilistic Analysis of Some

Combinatorfial Search Algorithms", in Algorithms and
Complexity: New Directions and Recent Resul®s, J. F. Traub
ria}TT Rcademic Press, New York, 1976, pp. I-19.

R. M. Karp, “"Probabilistic Analysis of Partitioning
Algorithms for the Traveling Salesman Problem in the

Plane”, Math. Oper. Res., Vol. 2, No. 3 (Aug. 1977), pp. -

209-224,

6. S. Leuker, *Some Techniques for Solving Recurrences”,

H. R. Lewis and C. H. Papadimitriou, "The Efficiency of
Algorithms*, Sci. Amer., Vol. 238, No. 1 (Jan. 1968), pp.
6-36
[JS— - LI T T T e

———— .

. S at—— S
o ———— - o gt ¢ 2t =

[14]

[1s5]
(16]

(17]

(18]

L. Yu. Morozenskii, "“On The Asymptotic Length of a
Commercial Traveler's Path When Towns are Randomly
Allocated", Theory Prob. Applications, Vol. 19, No. 4 (Dec.
1974), pp. 798-801.

C. H. Papadimitriou, “The Euclidean Traveling Salesman
Problem is NP-Complete®, Theoret. Comput. Sci., Vol. 4, No.

R. C. Prim, *“Shortest Connection Networks and Some
Generalizations", Bell Sys., Tech. J., Vol. 36, No. 6 (Nov.
1957), pp. 1389-140T.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, "An
Analysis of Several Heuristics for the Traveling Salesman
ProbSeT“, SIAM J. Comput., Vol. 6, No. 3 (Sept. 1977), PP.
563-581.

B. W. Weide, "Statistical Methods in Algorithm Design and
Analysis®, Ph.D. Thesis, Carnegie~Mellon Univ. (Aug. 1978).

6-37

Cmatia

S, il A o NN o e S

.

s —— o —

ALGORITHMIC COMPLEXITY
Part 7

by

Leonard J. Bass

DATA BASE ACCHESS METHODS

ABSTRACT
A survey is made of several different access methods for
both univariate and multivariate range queries. These
techniques include B-tree and extendible hasning as univariate
tecnniques and radix bit mapping and K-D-B trees as
multivariate techniques.
Al techniques discussed are currently suitable for

practical use.

7-1

S,

— e

R A s
RN AR Y

DATA BASE ACCESS METHODS

As the requirements for accessing large data bases have
grown, the techniques used in managing these accesses nave
become more sopnisticated. In this paper, several of these
techniques are surveyed. First we review K-ary and radix trees
which are utilized by the access methods discussed. Next we
discuss two different univariate access techniques, B-trees and
extendible hashing. Finally we present two multivariate access
methods: radix bit mapping and K-D-B trees. A1l of the
techniques discussed are currently suitable for nractical use.

The problem we are discussing is the accessing of a data
base by the values of one or more of its variables. That is, a
large data file exists which contains records for many
variables and it is desired to ﬁetrieve the record(s) with the
specified values of certain variables. The forms of this
problem depend on the number of variables used to define the
records desired and whether these variables are defined
specifically (with a single value) or by a range of values.

More formally, 1if each vrecord of the data base has
variables xl’ X2, ey xS then there are four degrees of
generality for this problem.

1) For a fixed i and value v, locate all records with

Xy = v (univariate match)

2) For a fixed i and u < v locate all records with
ug X,V (univariate range)

.
A L A

S W ol e

R

g i

e

e oo . e

3) For a set of variables Xl, ceesy X_ r < s and a

r
corresponding set of values Vis oo Vo locate all
records with (Xl, s Xr) = (vl, ooy vr)

(multivariate match on r variables)

4) For a set of variables Xy, ..., X r <'s and two
corresponding sets of values Uy £V i=1, ... 1
Tocate all records with u; < x, < v, i=1, ..., r

(multivariate range on r variables)

On a typical computer system the central processor operates
about 1000 times faster than the associated input/output
processor. Since a data base resides on an exterral device
(generally a disk drive) the most important measure of a data
base accessing algorithm is the number of 1/0 requests that
must be satisfied to execute the algorithm.

Furthermore, data bases change over time, and these changes
are reflected in modification of data items. A modification is
a deletion followed by an insertion and another important
measure of an accessing algorithm is how well it adapts to
changes in the underlying data base.

OQur focus, then, will be on the amount of [/0 necessary to

access and modify a collection of records in a data base.

Notation
We are dealing with a data base of N distinct records, each
with its own physical record address. Within each record we

have s special variables which are to be used to access the

data base.

———— c——

. s

© e — -t ar e e =

For each query, we are given r < s pairs of values, Uy

cees UL and vl, sees Vo and we are 1looking for those

records (X;, ..., X) with u, < x; < vy for 1 < i <

r. (Note that we are assuming that the variables in the data
base have been numbered in a certain order and any guery must
be couched in terms of the first r of these variables. This is
certainly not true in practice but it simplified our notation
and, for _the purposes of analysis any two variables are
interchangable).

Within tnhe data base, for each pair of values Ujs vy we

have M. records which satisfy condition u; < Xy o<

- i i

and, for r pairs of values (ui, Vi)’ i =1, ... r we have M

records which satisfy condition u;, < X, < v, for i = 1,

eey To

By choosing uj; = v, we have the exact match problem and

by making uj < vy we have the range problem.

Trees
A node of a k-ary tree based on variable X (called the key)
consists of k values of x together with k pointers to other
nodes.
If node n, contains a pointer to node n

2

then a) ny is called a parent of n,

b) n, is called a child of ny

Descendent is defined in the obvious manner from child.

Any node which has no children is éa)led a leaf node.

L Y

ol S o

e Gt it i AU A MM 1§ P v g it

* —
STV L

o ——

|

[U

A k-ary tree is a finite collection of nodes such that:

1) there is exactly one node (named the root) whicn is the

child of no other node.

?2) Every node other than the root is thne child of exactly

one node.

3) No node is a descendent of itself.

An ordered k-ary tree is a k-ary tree in which, for any
node, the k values of X are ordered x; < X, < ... < X
and for non-leaf nodes, the k pointers Pl’ Cees Pk are such
that x; £ x' for every value x' in Pi or any of its
descendents. I.E. X provides a lower bound for any value in
any descendent.

We will only be dealing with ordered trees and will assume
the ordering without specific reference.

A k-ary tree provides a mechanism for searching the list of
values Xps eees xn to locate a particular value VY. The
algorithm proc -«4s as follows

0) Set P to be root node

1) Search node P with values x;, .., X, of tree to

find i such X <y < xi+1, if no such i1 set i = k.

2) Retrieve node Py

a) 1If node is not leaf then set P = p, and repeat
step 1.

b) If node is leaf then if y is in X{s eoes X it
will be in node Pje

Figure 1 gives an example of a k-ary tree and a retrieval from

a k-ary tree.

At o o

Since we are concerned with [/0 requests, with appropriate
choice of k, retrieving a node requires exactly one read.
Searching for a value requires traversing the tree from the

root to a particular node and thus the worse case measure of

“the number of read requests is tne length of the longest path

from the root to a leaf. (This is the height of the tree.)

The height of an ordered k-ary tree is minimized if tne
tree is kept balanced as points are inserted into or deleted
from the tree.

In the applications we will make of trees several points
can be made.

1) We are assuming tne existence of a data base and tne
various types of trees will provide an access patnhn to
the data base based on the values of variables. It
does no good to find a value efficiently using a tree
structure unless we can subsequently Tlocate the
associated data record. Thus, we will assume that the
values in the leaf nodes have associated with them the
appropriate ~ecord number.

?) Our definitions allow tne values at the higher 1level
nodes to either appear again at lower level nodes or to
have the retrieval algorithm terminate when it
successfully finds a vaiue at a higher level. In our
applications all values from the data base will occur
at the leaves. An implication of requiring all of the
data values to occur at the leaves is that the values

at the non-leaf nodes need not be values from the data

7-5

N N - P]

AD=A118 814 RHODE ISLAND. UNIV KINGSTON DEPT OF COMPUTER SCIENCE -=ETC F/G 9/2 | \
. ALGORITHMIC COMPLEX1TY. VOLUME I1.(U) :
JUN B2 £ A LAMAGNAs L J BASS: L A ANDERSON F30602=79=C-n124
UNCLASSIFIED B81-161-vOL=~2 . RADC=TR«82~152-vOL=-2 NL

-

T
I Ly,

g

-~ ———3;;

base. The values at the non-leaf nodes serve only to
discriminate between the values .at the leaves. A type
of tree where only the first portion of a value is used

to discriminate is called a radix tree.

B-tree

The first access method we shall examine is the B-tree of
Bayer and McCreight (2). In this section we present the
univariate version of this structure. In subsequent sections
we present two different applications of B-trees to solve the
multivariate range searching problem.

A B+-tree is an ordered k-ary tree where k chosen to be
the maximum number of items that can be read with one read
(kept in a single page in a virtual memory environment). In a
B+-tree all of the Xis i = 1, k appear in the leaf nodes,
regardless of whether they also appear in a non-leaf node.

The searching algorithm for a B+ tree we have already

given. We now give the algorithm for insertions and deletions

and then discuss these algorithms.

Insertion
To insert a new value y into an existing B+ tree, use the
following algorithm. '
1) Search for y in tree and locate the leaf node which
would contain y if it were already in list.
2) 1Insert y into node.
3) If now are less tnan or equal to k values in node then
exit.

7-6

T RIS

AR i o

- - O e

4)

5)

6)

There are now k+l entries in node. Split node into two

nodes, both with same number of elements (both k/?

if k is odd or one with (k+1)/2 and one with E;l if k is
even). The two new nodes are such that if x is in node

A and y is in node B then x < y.

The new node must now be reflected in the parent of the
split. Retrieve parent, insert smallest value of node
B and pointer to node B in parent. Modify discriminant

within parent for A (if necessary).

Repeat steps 3-5 for new node.

Figure 2 gives an example of the splitting process.

Deletions

To

+
delete a value y from an existing B tree use

following algorithm:

1)
2)

3)

4)

Locate value y in tree in leaf node P.

Delete y from node P.

If greater than or equal to ; values in P (E%l if k is
odd) or P is a root then exit.

There are now k/2-1 entries in node. Choose sibling
(Q) of node with same parent. If node Q has more than
k/?2 entries move one (either smallest or largest) entry
from @ to P. Reflect new discriminant values in parent
of Q and P and exit.

If node Q has k/2 entries then merge nodes Q and P into

node P and delete node (.

7-7

4

RSN A VP S

5) Retrieve parent of Q and call it P. Delete reference
fo Q from R.
Repeat steps 3-5.
It should be obvious from the insertion/deletion algorithm that
no node (excluding root) will ever have fewer than k/2 items in
it. Thus the maximum possible height of the tree with N items

is logk/? N. Thus a retrieval will take at most N

108, /2
reads. It should also be obvious from the insertion algorithm
that at most one split canm occur at each level of the tree.
Retrieval and splitting are the only I/0 operations required by
insertions. Thus at most 2]ogkl? N I/0 operations are
required for an insertion.

Deletions also require at most one merger per level. Thus,
deletions also can be done in 0(logk12 N) I/0 operations.

The type of B tree we have presented maintains all of the
data items in the leaf. Thus to solve the range éuery in one
dimension it is only necessary to search for the lower bound of

the range and then traverse the tree until the upper bound is

reached. This takes at most 1ogk,? N+ %ﬂ reads where M is the

number of data items in the range.
Note that the solution to the range query retrieves the

values in increasing order of the key.

7-8

Extendible Hashing

B-trees operate in logaritamic numbér of 1/0 requests and
give the ability to retrieve records in order on the key being
searched. If it is not desired to retrieve records in key
order another univariate technique is available with a better
expected retrieval behavior (although not necessarily a better
insertion/deletion behavior).
This technique (extendible hashing (3)) is a combinatio of
radix trees and hashing - a well established technique for
randomized but repeatable access into a table. We assume a
general familiarity with hashing. A general introduction to
hashing is provided by Standish (5).
Hashing into a fixed size table (say of size n) consists of
two parts.
1) A randomizing function f such that if x is an arbitrary
key value and y < n the probability that f(x)=y is
1ln. (f distributes the keys uniformly from 1 to n).

2) If x4y and f(x)=f(y) and x is already in the table then
a method exists which will find a free cell to hold y.
This is called collision resolution.

Two problems exist with the standard hashing techniques.
These are

1) The table size, n, must be chosen a priori. Hashing

works well when no collisions occur. If n was chosen
too small for the particular set of data inserted into

n then no good remedy exists.

v b e

b B . e ———— e

2) It is not easily possible to access the values from the
table in a specified order. Since f was chosen to be a
randomizing function, it cannot simuitaneously maintain
a particular order of tne keys. This is only a problem
if retrieving in key order is a requirement of the
particular application,

The algoritam we now present removes the first of these
problems and allows the table size to grow dynamically. The
basic idea behind the algorithm is to build a radix tree using
the hasning function as the search mechanism for the tree.

The algorithm assumes the existence of a randomizing
function f suchn that 1 < F(x) < 2" where n is chosen so that
2" is the largest possible table size. n=32 1is a typical
type of value.

At any point in time, there is a value d which reflects
essentially the table size. The first d bits of f(x) are used
as the radix with which to index into the hash table. Thus the
root of the radix tree is 2d entries long. The tree has only
one level, aside from the root.

The retrieval algorithm works as follows for a key x.

1) Calculate f(x).

2) Retrieve current depth, d, of the root. \Use the first

d bits of f(x) to index into the root of the tree. The
value retrieved is a pointer to a leaf node whicﬁ
contains x (if it is in the table).

3) Hash x into leaf using standard hashing and collision
resolution techniques.

7-10.

. ~ . Lowe -
R S T Co , T e

e l— — -

Figure 3 gives an example of this type of tree with d=3.

This algorithm takes exactly two read .requests to retrieve
a value. The.first request reads in the correct portton of the
root (no requirement exists that the entire root bé retrievable
witn one read). The second read retrieves tne leaf node with
the desired value. The correct portion of the leaf can be
retrieved directly from the first d bits of f(x) and thus no
searching need be done to find the pointer to the leaf.

Observe in Figure 3 that several locations in the root
point to the same leaf. This allows, for example, tne doubling
in size of the root node without affecting any of the leaf
nodes. Thus if d1d2d3 is a 3 bit binary number with
pointer P, by setting d1d2d30 and d1d2d31 to both
have poir."~ P we have increased d from 3 to 4, doubled the
size of the root and not affected the leaf nodes.

The insertion algorithm for the extendible hashing
structure will now be presented.

To insert a value x into the extendible hashing structure:

1) Locate the leaf node for x by retrieval algorithm,

2) If node is not full insert x by hashing and collision

resolution and exit.

3) If node is full and node is pointed to by several

places in root (this can be detected efficiently) then
split node into two nodes according to division in

parent node. Leave d unchanged.

7-11

AL B e os Vs

. — -
e ————- Y et v Aa = T WA ——————

e -

P

—

AR

4) 1f node is full and is not pointed to by several places

in root then the size of the root 1is doubled, by
incrementing d, each non-affected pointer in root is
replicated and then the node containing X is split into
two as in 3).
The deletion algorithm is similar and will be omitted.
As can be seen from the insertion algorithm the benavior of
the extendible hashing algorithm depends heavily wupon the

uniformity of the function f. In the worst case thne behavior

of the algorithm 1is 1linear in n but both anailytic and
simulation results {(3) indicate that the expected behavior of

the algorithm is somewnat better than that of B-trees.

Discussion

Both algorithms discussed provide efficient access to a set
of keys. B-trees are logarithmic in both the expected ard the
worst cases. Extendible hashing is the order of a constant in
the expected case for retrievals and apparently logarithmic in
insertions (based on timing cnarts and not analytic results).

Both provide for dynamic modification of the underlying

data base and respond well to modifications.

B-trees require at most -i—ﬂ,logk/2 n pages of disk storage
and allow for retrieval in the order of a key once tne lower

bound has been found.

7-12

T T

--

Extendible hashing takes 2 page accesses for a retrieval
and requires at least "/k + 1og?nlk pages on the disk.

Extendible hashing also will not allow retrieval on key order

but only in f(key) order.

Multivariate Retrieval

We now turn to the mure general case of finding those

records such that if (”j' Vj) j=1, ..., r are r ranges then
retrieve all records withn Uj S X5 £y for j =1, ..., r.
If r=2 then this may be visualized geometrically by viewing
records in the data base on points 1in two space and
(ul,vl), and (u2,v2) as defining a rectangle in two
space. In this case we wish to retrieve all points that lie in
the rectangle. If r=3 we are in 3 space and are defining a
rectangular solid and in general we are defining a region in r
space.

The geometric interpretation will become useful in the
second algorithm presented which solves the problem in
r-space., The initial algorithm we present will solve this
problem by iterating on the range problem for each of the keys
and thus essentially solves the problem by projecting the
rectangle onto each of the coordinates in turn. This algorithm
has been implemented in a statistical data management system

available on mini computers (1).

7-13-

e B et v

g

-~
e e ——— At > 2 WAn rir P b A et P e

-

Assume all the records of the data base are numbered

1, ..., n and assume that given 1 < i < n we can retrieve the

record easily. The algorithm we present maintains B-trees for
each of the r desired keys. Associated with each key is the
number of the record wich contains it.

The B-trees are maintained permanently on tne disk. When
responding to a particular query a radix tree is created. This
radix tree contains the current set of records that satisfy the
query. Thé .philosophy behind the construction of the radix
tree is to view the leaves of the tree as being N consecutive
bits. If record i satisfies the current query then bit i will
be on, otherwise it will be off.

Viewing this bit map as a radix tree both reduces the
memory required (under reasonable assumptions) and simplifies
the retrieval from the tree. Suppose each leaf can hold &k
bits. Then to locate record i in the radix tree use 1./k as
the radix and interrogate the bit numbered i mod k in the
appropriate leaf, |

E.G. If k=1024 and we wish to indicate the presence of
record 18360 then turn on bit 952 in the leaf pointed to by the
17th pointer in the root.

Using a radix tree rather than a standard bit map
introduces one additional node (the root) and allows the

omission of any leaf not referenced by a particular query.

7-14

P

If 256 pointers can be kept 1in the root and each node
contains 256 x 16 bits thnen 106 records can be represented
with a tree of neight two. Once the individual trees nave been
constructed for each variable then they can be merged into a
tree which contains the desired subset. Figure 4 demonstrates
this process for one variable.

The algorithm for retrieving the desired subset for a
multivariate range query is

1) for each of the r keys (say j) construct the radix tree

that reflects those records with uj < xj L Ve

2) Merge the r constructed radix trees by ANDing the

leaves together.

3) The resulting radix tree contains exactly the records

desired.

The difficulty of constructing the radix trees for a single
key depends upon the number of distinct pages referenced by the
range of values for that key, if the first d bits of the record
number are the same (where d is the 1length of ilk in bits)

only one page is referenced, etc. If P. pages are referenced

J
by the jt" key and Mj are the number of distinct data
records in the jt" range then the construction of the jth

prefix tree takes

2M,;
]°9k12 n + _Fl + Pj page references and the determination

of the appropriate subset takes
r M,
rologg, n* i (L Py

7-15

e A v

-~ o

Thus this algorithm works well if the projection on each
axis contains points that are c]usteréd together in terms of
data base record number. It also works well if sufficient rea)
memory 1is available to hold the constructed prefix trees since
then no page faults would be generated.

Notice, nowever, that if r=1 and up = vy and the keys
are unique that the construction of the prefix tree requires
one additional page reference beyond the B-tree retrieval. If
this page is permanently allocated in real memory then for the
case of a single unique identification variable this method
costs no additional input/output

Since tnis algorithm depends upon univariate B-trees, if
the data base is updated the individual B-trees respond to the
changes as already discussed.

Also, once a desired subset is defined we can retrieve the
records in the subset in the order of a particular key by
retrieving from the B-tree for that key and using the radix
tree to determine whether each record was in the desired subset.

Finally, since the data structures permanently maintained,
the B-trees, are univariate the only dependence upon more than
one variable is in response to a specific request. Thus, the
B-trees that are maintained are suitable for univariate
requests on any key or multivariate requests on any combination

of keys.

7-16

- ————

o hme— - o

K-D-B Trees

The final algoritnm and data structure discussed provides
promise of a more efficient access for requests couched in
specified a priori terms of set of keys. This structure is a
generalization of B-trees themselves to multiple dimensions.
For simplicity we present the 2-dimensional case and the nigher
dimensional structures are similar.

One dimensional B-trees c¢an be viewed geometrically as
providing a partitioning of an axis witn (rougnly) an equal
number of points in eacn interval. The k adjacent partitions
are grouped into one partition at the next higher level to
provide the access path.

The K-D-B tree (4) is a generalization of thnis geometric
view to higher dimensions. In the ?2-dimensional case instead
of partitioning a single axis into intervals as in one
dimension, we partition the plane into rectangles. At the
lowest level each rectangle has (roughly) the same number of
points. At higher 1levels, the access paths are provided by
grouping rectangtes from lower levels into larger rectangles.
See figure 5 for a grapnical representation of a 2-D-B tree.

Thus, a 2-dimensional range query defines a rectangle in
the plane and all rectangles in the 2-dimensional K-D-B tree
that overlap the desired region would be searched to retrieve

all the records that satisfy the query.

ol e L

A > ps Whins

&]

If, in fact, all of the lowest level rectangles nad roughly
the same number of points, this structure would guarantee a
logarithmic worst case behavior. The problem 1is that no
insertion and deletion strategies currently exist which
guarantee a minimum number of points in a rectangle.

This is most easily seen when dealing with deletions,
although a simiiar problem exists with insertions. Recall that
the deletion algorithm for one dimensional B-trees provided for
merging two adjacent intervals when both had 1less than k/?
points. This works because two adjacent intervals also define
an interval. When dealing with rectangles, however, this does
not work. If A and B are two adjacent rectangles then one edge
of A must be a portion of an edge of B (or vice versa). If the
overlapping edges are not identical then the merger of the two
rectangles is not a rectangle. Thus, when deleting points,
either the definition of the regions in terms of rectangles
must be abandoned or the merger of two sparsely filled
rectangles must he abandoned.

Robinson (4) advocates eliminating the merger step when
deleting which in the worst <case could result in empty
rectangles. A similar problem results when doing insertions.

The mechanism for using K-D-B trees then is to build the
underlying data base first. Then build the K-D-B trees and use
ad hoc techniques to allow for such insertions and deletions as
may occur. Simulations show that the expected behavior in such

circumstances is very good.

7-18

e

S e -

S

e

ewer

Comparison

Figure 6 gives a table which compares the four algorithms
we have surveyed. Tney are compared from the point of view of
time to retrieve, time to update, and suitability for various
types of queries.

If only univariate exact match queries are expected then
either B-trees or extendible hashing ©provide the Dbest
responses. Tne choice between those two should be based on the
dynamic nature of the data base. If the data base is
relatively static (few insertions or deletions) then extendible
hashing is recommended. If the data base is highly dynamic
then B-trees are recommended. If univariate range queries are
expected as well as exact match, then B-trees are recommended.

1f multivariate exact match gqueries are expected with
little a priori knowledge of wnich variables are involved then
either B-trees or extendible hashing may be used to create the
radix bit map. Again the choice is based on the dynamism of
the data base.

If multivariate exact match queries are expected for a
specific set of wvariables then a K-D-B tree could be
constructed for those variables if the data base is not very
dynamic.

If multivariate range queries are expected then the choice
is between K-D-B trees and B-trees with radix bit mapping. If
the underlying data base is not highly dynamic and the queries
are always in terms of the same variables then use & K-D-B tree

otherwise use the univariate B-trees with radix bit mapping.

7-19

vat o e

>~ o

—

3343 fde-¢
1 9unby 4

21 p402d3.4

ut st 31 puly pue
9 ‘2 ‘T sopou 3tsta
1y 3A214334 0}

@ oo1 ® mmi@@oz (@os & 1v @megz

aseq ejep 03 juiod
SJ33juiod Sapou jeap ur -

Sapou J3u30 03 jusod
S493ut0d S3pou jed| uou ut -

O Aq pajeubisap suajuiag

@ s¢ @ s @h%uwz (© i ©@s: @ 12)

O 21 @01 @ ©

o~/

v °pPON

A ST 8
Te 12 S
et £l
184 A
0S 1
89 0t
£6 6
29 8
S(L
£8 9
S S
9¢ 14
8¢ t
01 2
001 1
3Inep Aaquny
fay P40y
aseg ejeQ

-

AT e
R 1 ,».wwsw,w PRSI

T 24n6td 01 G2 @nyea A3x uyitm 91 ptodad GuLppe 4333V
¢ 9danbuy

Root

First 3 bits of f(x) Depth=3

000

f(x)=00...

001

010
011

f(X)=010-...

100

101
110

~ 1/ \\

f(X)=011-...

111

f(x)-lOO....

Figure 3
Extendible Hashing Tree

et A

l
i

7-22

r,--_‘-...,..~..~____ -

L I__T0[0]J0JOJOo[o]

3 11
4 12
15
18
.
Values in root node are implied by having pointers.
w Values in leaf nodes are maintained by turning on
b bit in node.
E
¥
R
$

Figure 4
Radix bit map after searching Figure ?
for 28 < x ¢ 62
(assume & entlries per node)

7-23

appropriate

e

NN
: // /7///

A

NI
N \/////////

I 7N\

QN
\ AN / .WM_.
|\¢ﬁ \ o = 32
/ooa/ A D..N.-I
[T
< \ Al-s

B-tree

Extendible
Hashing

Radix B8it
Mapping
Using
B-trees

K-0-8

Number of 1/0 1/0
Variables Behavior Behavior
for for
Retrieval Modification
1 log Tog
(worst case) (worst case)
1 1o0g
(worst case) (expected)

r (chosen as r log r log
result of (if clustered (worst case)
query) in records

referenced)

r (chosen log log

a priori) (expected) (if not too
dynamic)
Figure 6

Comparison of Methods

7-25

- —

1)

2)

3)

4)

5)

References

Bass, L. J., “DATMAN FORTRAN User's Guide", URI Computer
Science Department, TRB0-1456.

Comer, D., "The Ubiquitous B-tree", Computing Surveys,
Vol.?, No.3, September 1980.

Fagin, R, Nieverge, H. J., Pippenger, N. and Strong, H. R.,
“gtxtendible Hashing - A Fast Access Method for Dynamic
Files", ACM Transactions on Data Base System, Vol. 4,
No. 3, September 1979.

Robinson, J., "The K-D-B Tree: A Search Structure for
Large Multi-Oimensional Oynamic Indexes", Proceedings
1981 ACM-SIGMOD Conference, May 1981.

Standish, T. *"Data Structure Techniques", Addison-Wesley
1980.

7-26

. ——~

L
i
[
]

ALGORITHMIC COMPLEXITY
Part 8
by
Ralph E. Bunker

and
Leonard J. Bass

AN EXPERIMENTAL EVALUATION OF THE FRAME MEMORY
MODEL OF A DATA BASE STRUCTURE

ABSTRACT

Frame memory is an analytic model of a data base access

method. This model enables the prediction of access

performance measures in terms of user behavior parameters.

This is an important aspect of the automatic generation of data
structures. |
In this study, a version of frame memory was implemented
and then a simulation study was performed to validate the
predictions of the analytic model agéinst the implementation.
The model yielded good predictions (less than 10X error)

for most of the cases tested. The assumptions under which the

analytic results were derived were violated-during a portion of

the simulastion to test the robustness of the model and again,

the analytic model yielded good predictions.

. — . b e e =

AN EXPERIMENTAL EVALUATION OF THE FRAME MEMORY
MODEL OF A DATA BASE STRUCTURE

A desirable goal of data base research is' the automatic
generation of data base structures. A designer would specify
some limited number of characteristics of the data and would
have automatically returned the data structures, the access
items, and the access paths. A step in the direction of that
goal would be for the designer to furnish usagelinformation and
a proposed storage structure, and to have returned the expected
response parameters. The frame' memory modei of storage
structure has been proposed as a mechanism for predicting
system response as a function of wusage and structural
information. In this study, we report on an experimental
validation effort for frame memory.

Most attempts at automatic design involve the following
steps:

1. Determine how the users of the file system are planning
to use the system. This provides the necessary input
for the automatic design system. Usage is defined by

" the differeht ‘types of records in the system, their
lengths and fields, plus the expected frequencies of
additions, deletions, modifications, and retrievals to

records and subsets of'rgcords in the file.

Bk Bt B M BorRT M ok e e e g et L

[P RR—

Select a set of storage structures for the records
based on usage patterns defined. in step 1.

Evaluate how this set of storage structures perform in
the anticipatéd environment. This'evaluation must take
into account the change that the storage structures
will undergo due to maintenance.

Assign a rating to the set of storage'struétures based
on this evaluatibn. This rating will de;eruine whether
or not the set of structures w;il be considered further
as a possible design choice.

Inform the designer as to the set of structures which

have received the best evaluations.

Frame Memory

We are interested here in what is involved in step 3 of the

design

process. This step 1is complex partially because the

amount of time needed to retrieve data from a storage structure

rarely

remains- constant throughout tha 1life of the storage

structure.

March (MAR78) has proposed that step 3 of the design

process be divided into two steps as follows:

38.

Compute the average time to perform fundamental
operations on the storage structure, taking into
account the effects - of updatgs to the storage
structure. Fundamental operations include reading a
logical block, scanning a logical block of records for
a particular record, directly accessing a record, and

writing a logical block.

8-2

ol e e

"

3b.. Use information from step 3a to calculate the average
time to perform an voperation of interest, which may
involve a number of fundémental operations. For
example, the operation of adding a record to a data
structure can involve first the operation of reading in
the logical block which will contain the record and
then writing the updated logical block.

March proposed a model of secondary memory which he called
frame memory. He also analyzed the cost of using this model to
implement retrievals and modifications to a data base. The
designer would specify data structure and retrieval
requirements in terms of the frame memory. The cost of
satisfying these requirements would be calculated and reported
to the designer. The designer could then choose the best data
structures. '

This makes sense only if the equations used to_predict the
performance are correct and there is an implementation of frame
memory so that the designer can then use this implementation to
actually access the data structures created.

This provides the motivation for the study reported here.
An implementation of frame memory was done and then this
implementation was tested to see if the analysis yilelded
correct predictions. Some of the assumptions within which the
analysis was done were violated to test the dependency of the
analysis on those a?sumptions.

The results indicate that the predictions were close to

experimental results for almost all cases.

8-3

i

From a user's perspective, frame memory partitions
secondary memory into contiguous and directly accessible areas
of storage called frames. A frame is the logical unit of data
transferred between main and secondary memory. Information is
maintained in contiguous areas within frames called frame
records. Figure 1 gives a user perspective of a frame memory .
Frames have four essential functional characteristics:

1. Directly accessible records. As each new, possibly
variable length, record is stored in a frame it is
assigned a loéal identifier called a (frame relative
record) token. The association between the record and
this token is unaffected by subsequent frame storage
.and maintenance operations.

2. Sequentially accessible records - Once a frame |{s
transferred to main memory its records may be
sequentially referenced in either their physicél order
or in a user constructed logical order termed the
(frame referencing) stream (Figure 2).

3. Frame elasticity - A frame is capable of stretching to
accommodate arbitrary growth. This is the way in which
maintenance operations which change the number or size
of records are handled in this model. Frame growth (or
'shrihkagé) has no direct affect on other frame
functions but is reflected indirectly in frame

performance charucteristics (Figure 3).

8-h

4. Record stream maneuverability - The 1inter-record

structure of the frame reference stream is maintained

by the frame memory and may be dynamically modified by

a frame user.

Three implementation guestions arise:

1. What typz of structure will support frame expansion
(function 3)? _

2. What type of structure will be used to maintain the
internal order of frame‘records within a frame
(functions 2,4)?

3. What types of structure will be used to maintain
tokens for records within a frame (function 1)?

The implementation was subject to- the constrainf that it
must conform to the basic assumptions fhat_ March used 1in
analyzing his model of frame memory. The fundamental data
structure that was used to support the frame expansion function
was a chained overflow structure. This allows the user to
perceive the frame as expandable while the frame memory
implementations actually decide how to handle the expansion.

A fixed amount of space 1is initially allocated in secondary
storage for each frame. This initial allocation is called a
prime frame and the area of secondary storage in which prime
frames are allocated is called the primary data area. The
‘primary data area spans a number of cylinders of a disk.
Within each of these cylinders a certain percentage of space is
set aside for the primary data area. The remaining space 1is
used for frame expansion and is called the local overflow

8-5

. em——

area. Records are stored in a prime frame until the space
allocated to the prime frame is exhausted at which time an
additional allocation of secondary storage space called a frame
extent is made. There are two types of frame extents ~ local
extents and global extents. A local extent exists in the same
cylinder as the prime frame it is assigned to and is allocated
from the local ovefflow area. A global extent exists in a
global overflow area which is separate from the primary data
area. Figure 4 depicts the relation betwen these frame
components and cylinders. Since the global overflow area is
separate from the prime data area, the head of the disk must be
moved and hence access to it is more expensive. A local extent
will always be used 1f there 1is space available within the
local overflow area.

Frame extent allocations (either local or global) can be
either fixed or variszble. A fixed extent is generally capalle
of holding several records whereas a variable extent is only
large enough to store the record which caused the extent "to be
allocated.

Once an extent has been allocated it is necessary to
associate it with the prime frame being extended. This is done
by maintaining an extent index in the prime frame which points
to each extent associated with the prime frame. Figure &
illustrates this method. '

The expansion structure which was used has fixed length
extents and an extent index. Although an extent index uses
some space in a prime frame, the amount of space is usually

8-6

By A & D a s A S

small compared to the size of records stored in the frame and
an index has the advantage of locating any extent in only one
access. . Fixed 1length extents may waste space if variable
length records are used. They do reduce the number of extents
needed, however, which is desirable if an extent fndex is used.

Next, the maintenance of the iogical frame stream will be

discussed. This 1is ‘basiqally a determination of how the
concept of "next record" will be implemented. The next record
is fhe one which would be physically contiguous to the current
record if all of the records of the frame were cont@guous. We
used an indexed mechanism for maintaining tokens. That is, a
pointer is maintained for each frame record; a token is a
relative pointer count from the beginning of the index.

In review,.the implementation of a frame memory which 1is

used in this research has the following characteristics:

1. Extents are fixed length and maintained by an index
stored on the prime frame.

2. The 1logical frame stream is maintained by address
sequential connections (i.e., the physical order of the
records correspond to the logical order).

3. Frame record tokens are maintained by a token index
stored in the prime frame. » ‘

This implementation has been chosen for the test system for

two reasons: |

l. The prediction of its performance measures involves a
complex analysis. The purpose of this implementation
is to verify the correctness of March's analysis of

8-7

O T

frame memory performance, hence, it is appropriate to
choose an implementation which is difficult to analyze.

2. Other researchers have used a similar implementation

for experimental relational data base manageaent
systems (ST076). This is a situation, therefore, in
which automatic data base design research may find a
valuable application in the future.

March analyzed frame memory in terms of two types of
parameters: usage and device. The usage parameters specify
the characteristics of how the frame is to be used. March
proposed the following usage parameters for his frame memory:

NR - the number of records initially loaded into the
memory .
LR - the average length (characters) of a stored
record. Records may be of Qariable iength.
NADD - the number of additions per time period.
NDEL - the number of deletions per time period.
RINT -
the reorganization interval. This is the time period at the
end of which the frame memory will be taken off line and all
extents will be incorporated into prime frames. This usually
happens when performance of the frame memory has deteriorated
significantly due to update generated overflow chains. All
performance measures are averages over this interval. This
measurement standard is inspired by the idea that the best file
organization is the one with the maximum average performance

over its lifetime.

e

'z

Some of his device parameters are:

TLOC - average disk latency time.

TRAN - the average disk seek time.

TFRTE - the data transfer rate between main memory and

disk storage.

MLMB - the size of a track (bytes) on the disk used to
store the frame memory.

LSZE - the amount of data storable in a cyiinder.

Other usage parameters (those connected to the device
usage):

PALF - the primary area load factor. This is the
percentage of each cylinder that is used for
prime frames. The remaining space on the
cylinder is used for the local overflow area.

FMLF - the frame memory load factor; the proportion of
the space allocated to prime frames that |is
required to hold initially ;oaded data. If this
is less than one, then each prime frame has some
free space to use before allocating an extent.

FRAE - the length of a frame extent.

Figure 5 illustrates the mapping of an_gxtended frame into
physical storage and illustrates parameters FMLF and FRAE.
March analyzed ten different performance_ measures. We

focus on:

8-9

1) FFPHY - the average time to retrieve a full frame in
physical stream order. A full frame consists of
a prime frame and whatever extents have been
generated for it. |

2) FRTOK - the average time to retrieve a frame record by

its token. . '

The experiments we performed were intended for twe
pufposes. First ee validated March's analysis by using the
assumptions he made in doing the analysis. Secondly, we
violated his aseumptidns to explore the 1limitations of the
analysis. In general, the results of the experiments ehowed
the robustness of his equations without regard for whether the

assumptions were maintained.

Six fundamental assumptions regarding' the charecteristics

and use of the frame memory were incorporated by March into his
equations. These assumptions are: |

1. March assumes only the most primitive type ‘of
buffering. Only'one prime frame or one extent can be in main
memory at a time and the current contents of the buffer aren't
checked before doing I70. For instance, in the evaluation of
the time it takes to read a frame in stream .order,_ it is
assumed that the frame has to be fetched from the disk. In a
more realistic buffering scheme, theee is the possibility that
the frame is already in core and hence no 1/0 would be

necessary to fetch it.

8-10

-~

This assumption is equivalent to the one that no frame in
the memory sustains consecutive additions or deletions of
records. That. is, each addition or deletion operation involves
a frame different from the one used in the preceding
operation. We followed this a#sumption in the experiments.

2. The amount of disk storage space needed for extent and
token indices 1is small (10 percent) compared to the storage
used for frame records. March ignores the effect of overhead
in several of his equations. There are many situations in
which this assumption is questionable. For instance, if frame
records are only ten characters long then overhead may consume
twenty to twenty five percent of the storage used for the
table: hence, the percentage of overhead is a function of the
record length of a frame record and the length of a system
pointer. Both of these are implementation parameters. The
length of a system pointer is increased (thereby increasing the
overhead percentage) in the experiment which tests the affect
of altering this assumption. |

3. Maintenance operations (addition, deletidn, and
modification) are uniformly distributed over the set of prime
frames. This 1is a key assumption which has many exceptions.
For instance, it has been observed that in many data base
systems twenty percent of the records are involved in eighty
percent of the transactions on ghe data base. We tested the

effect of this assumption in one of the experiments.

8-11

4. The stdrage device containing the frame memory 1s.

dedicated to only one user. In pthef' words, there 1is no

concurrent use of the frame memory by two or more users and the

frame memory storage device mxperiences no activity other than

that initiated by the frame memory user. It is expected that
future models of a ffame memory will allow more than one user
since cdncurrént' use of a data base is one of thé prime
motivations for. the development of data base Managgment
systems. A multiuser environment is approximated by randomly
changing the position of the disk head'during the processing of
the frame memory updates and retrievals. There are thrée ways
in which the head can move corresponding to three different
usage situations. First, it has not moved since the last time
that a particular user fetched something from the frame
memory. Secondly, it has moved but has stayed within the frame
memory data set. This happens when twoA or more users are
concurfently using the frame memory. Third, it has moved
outside the frame memory data set. This movement would be
caused by a user accessing a data set other than the frame
memory data set. In the experiment testing the impact of many
users it 1is assumed that 50 percent of the time the head
doesn't move and 50 percent of the time it moves within the
frame memory data set. The frame memory is assumed to occupy

the entire disk so there is no movement outside the frame
memory.

8-12-

— e

e e . it g

5. The rate of maintenance and retrieval activity is
linear. 1In other words, there are no flurries of maintenance
activity followed by 1lulls of no activity. Also, the update
operations are dispersed uniformly. That is, there is not a
batch of additions followed by a batch of deletions. The
experiments that were performed adhere to this assumption.

6. The degradation of the frame memory is a function of
the difference between the number of additions and the number
of deletions and does not depend on the actual number of
additions or deletions. That is, two hundred additions and no
deletions cause the same degradation as four hundred additions
and two hundred deletions. This assumption is implicit in the

experiments performed since in all experiments oniy additions

are made to the frame memory.

Measurement Techniques

For each of his performance measures, March calculates a
value at "steady state". He defines steady state as the time
at which the number of records initially locaded into the frame
has been doubled. He assumes his performance measures degrade
linearly from an initial value to the value at steady state.
He calculates the performance measures at steady state as a
function of physical and usage parameters such as average
access time and number of global extents generated.

As an experiment proceeded the physical and usage
parameters needed by the predictive equations were gathered by

the implementation. These were the values used in calculating

8-13

S . e— e

N orem e "

Sy
o 4 -

e
RSN ES. APE

the predicted values. The performance measures were also
measured during the course of an experiment. This provides
measurement versus predicted performance from the start of an
experiment to the end of the experiment.

The performance measures taken during the course of the
experiment (average time to read all records in token order and
average time to retrieve a token) were assumed to have been
modified in an interval only by the records actually added
during thst interval. Thus, the calculations for the
performance measures were done with each addition by adding an
incremented value (the time to access the record Just added
either in logical order or alone) to a running total. This
engbled the calculation of average values without actually
having to read all of the records.

Since the predicted values were based on actual physical
and usage parameteré. any dependency upon the method of
estimating these values were eliminated from the experiments.

This methodology provided a means for testing the
prediction equations while still enabling variations in some of
the fundamental assumptions upon which the predictions were

based.

Experiments

Six experiments were performed. Table 1 lists the values
of the parameters that were varied for each experiment. A

brief rationale is now given for the choice of experiments.

8-14

e

— e s

i

-~

-y e

- e 3 .y e
TABLE 1 - PARAMETERS OF EXPERIMENTS

E# DIST SIZE EPF NADD NDEL PALF USERS
1 U 160 5 200 0 0.85 one

2 U 80 10 200 0 1.00 one

3 U 400 2 200) 1.00 one

a u 160 s 200. 0 0.85 one

5 U 160 5 200 0 0.85 one
6 U 160 5 200 0 '0.85 many

The meaning of the parameter mnemonics are:

E# - experiment

DIST

number

the distribution used for selecting frames for updates.

Here U means uniform distribution and N normal

the size of an extent allocation

of extent sized blocks in a prime frame

of additions per unit time interval

distribution.
SIZE -
EPF - the number
NADD - the number
NOEL - the number

PALF - percentage

of deletions per unit time interval

of a cylinder used for prime frames

USERS - the number of users competing for access to the frame

memory

LP - the length

of a system pointer (in bytes)

8-15

LP

oy

- —

R

Experiments 1-3 adhere to all of March's assumptions and
are a test .for fundamental errors in his equations. Experiment
1l is run with a frame memory containing one local extent for
each frame. Extents can contain two records and at load time a
prime frame contains nine records. Experiment 2 uses a frame
memory with no local extents. Each extent can hold only one
record and as before the prime frame is big enough to hold nine
records. Experiment 3 has the same conditions as Experiment 2
except that an extent can contain four records.

The remaining experiments test the effect of altering the
assumptions which March used for his analysis.

Experiment 4 uses a normal distribution to determine which
frames get updates (assumption 3). The frame memory used has
local extents (one per prime frame) and éach extent can contain
two records.

Experiment 5 uses a large value for the length of a system
pointer in order to make the overhead needed for each record
approximately 10 percent of the record length (assumption 2).
The frame memory used has local extents (one pef prime frame)
and each extent can contain two records.

Experiment 6 tests the effect of other users competing for
use of the frame memory (assumption 4). The frame memory used
has no local extents and each extent can contain only one
record.

The following parameters were held constant for all of the

experiments:

8-16

|

memory uses 42 tracks.

8-17

- ————

1) (LOGOVHD) The track size of the logical frame memory
device was 3170 bytes.

2) (LOGOVHD) No overhead is needed fcr a block on the

logical frame device.

3) (LOGTPC) There are 12 tracks per logical cylinder.

4) (TCYLS) The frame memory has 200 cylinders.

5) (PHYMLMB) A physical track can contain 19254 bytes.

6) (PHYOVHD) The overhead for a physical block is 135
bytes.

7) (FMLF) Each frame was initially completely filled
with frame records.

8) (TLOC) The disk latency time for the logical frame
memory device was 36.3 milliseconds.

9) (ACCFUNC) Figure 6 illustrates the seek time function
used for the logical frame memory device.

10) (TEST) The frame memory operated in test mode.

11) (NUMFRMS) The number of frames is 1800.

12) (NR) The number of records initially loaded is ‘
16200. é

13) (RINT) steady state is defined to occur after 81 unit f
time intervals. This is the time when the ?
size of the file has doubied. This is the é
criteria for steady state that was used by ?
March. ?

la. (NUMTRKS) The physical data set supporting the frame

Results

The results of the experiments are summarized in Table 2

and grasphically depicted in Figures 7 - 8.

TABLE 2 - PERCENT-OF-ERROR STATISTICS

FFPHY
EXP . MEAN STD MAX
1 12.83 21.51 20.76
2 6.62 13.37 10.88
3 24.13 59.17 35.39
4 6.65 2.61 9.06
5 5.78 4.68 7.45
6 3.28 2.35 5.04

FRTOK
EXP MEAN STD MAX
1 4.44 1.34 5.34
2 10.48 0.64 12.97
3 6.04 3.66 7.50
4 8.18 3.93 9.87
5 7.59 3.32 8.52
6 6.10 0.55 6.85

8-18
" S

MIN
0.68
0.15
8.93
0.44
0.38
0.05

MIN
0.67
9.55
0.26
0.62
0.26
2.93

S

2w

A brief overview of the results will be presented first
followed by a more detailed analysis. A predicted value within
ten percent of the observed one is considered a good
prediction. Of course, more precise predictions are desirable
but for the current state of the art in automatic data base
design, the ten percent error range will probably be accurate
enough. Each performance measure will be discussed separately.

1. Average time to retrieve a full frame in physical order

(FFPHY).

Experiments 1, 4, and 5 are all performed on equivalent
frame memories (1.e;, local extents are available ard two
records can fit on an extent). Experiment 1 uses all of
March's assumptions and the observed value of FFPHY is, on the
average, within 12.83 percent of the predicted value. Changing
the assumptions of small overhead per record (experiment 4) and
a uniform distribution of updates (experiment 5) reduces the
average error by about 50 percent in both cases. Experiments 2
and 6 are also run on equivalént frame. memories (no local
extents and one record per extent). For both the predicted
value is well within 10 percent of the observed one.
Experiment 3 produced a large discrepancy between the pred;cted
and observed values (i.e., 24.13 percent).

2. Average time to retrieve frame by token (FRTOK)

All experiments but one produced observed values within 10
percent of the‘predicted values of FRTDK(The‘exception was

experiment 2 for which the average percent of error was 10.48

8-19

T i e AR - A A -

G A

I

¢
e

[2k 2

percent. In all cases the observed value was higher than the
predicted one.

In his analysis, March first comsputes averages for
performance degradation at what he calls . ‘*eady state time.
This is merely the number of unit timse intervals required to
double the number of records initially losded in the frame
memory . The degradation at steady state for a performance
measure is denoted by DS(*measure).

OS(*FFPHY) = ANEXS * ATRES

DS(*FRTOK) = FVTKS * ATRES
where ANEXS is the average number of extents per frame at
steady state time. ATRES is the average time to read an extent
at steady state. FVTKS is the probability, at steady state
time, that 1f a frame has extents then the desired record is in
an extent. '

Table 3 contains the analytical and observed values of
ANEXS and FVTKS. In general, there is a good agreement between
the observed and predicted values. An exception is experiment
5 (large system pointer overhead) for which there is not good
agreement for either . Table 3 also contains a breakdown of
the average time to read an extent into two different kinds of
averages. The first average (AVGE) is the average time to read
an extent given that the head 1s positioned at the cylinder
containing the extent (or prime frame) which immediately

precedes it in the chain of extents attached to the prime

8-20

frame. This is the average read time that is expected when a
frame 1is read or scanned. The second average (AVGD) is the
average time to read an extent giver that the head is
positioned at the cylinder containing the prime frame to which
the extent belongs. This is the average read time for extents
when records are directly accessed. In general, AVGE is less
than AVGD since global extents may occupy the same cylinder or

cylinders which are close to one another. Therefore, it takes

less time to fetch an extent in the extent chain once the head

is positioned in the global extent area than it does to fetch
the same extent from the prime frame. March does not
distinguish between AVGE and AVGD but calculates one average,
ATRES, which is a function of the time to access a local extent
and the time to access a global extent. He assumes that the
time to access a global extent is TRAN (also listed in Table
3). For these experiments TRAN is the observed value for all
random accesses (including prime frames) over the steady state

time interval.

8-21

e ¢ e ——

-

|

TABLE 3

PREDICTED AND OBSERVED PERFORMANCE MEASURE VARIABLES

08S
E# ANEXS
4.80
9.54
2.20
4.89
5.58

N W > W N~

9.54

Column headers are:

PRE
ANEXS
4.76
9.03
2.20
4.76
4.76
9.03

TRAN AVGE AVGD
86.7 71.3 88.5
79.7 67.3 102.0
94.8 94.9 103.0
80.8 67.7 91.6
86.3 71.4 91.7
87.5 8l.8 97.9

PRE
ATRES
76.7
80.3
95.5
72.1
77.4
88.2

(all averages are state averages at steady

state)

E# - experiment number

PRE - abbreviation for predicted

08S - abbreviation for observed

ANEXS - the average number of extents per frame

TRAN - the average time to do a random access

AVGE - the average time to read an extent from an extent chain
AVGD - the average time to read an extent from a prime frame
ATRES - overall average time to read an extent

VTK - the probability that a record is in an extent -

8-22

In most cases the discrepancies can be explained by
observing the behavior of the variables which March used in the
calculation of the performance measure under discussion. For
this purpose, graphs have been provided which map the behavior
FVTK (FVTKS is the value of FVTK at steady state) (Figure 9)
AVGE and AVGD in Figure 10 and ANEX (ANEXS is the value of ANEX
at steady state) in Figure 11.

FFPHY fared so poorly in experiment 3 primarily because of
the behavior of the variable ANEX as shown in Figure 1ll. The
rapid acquisition of extents at the beginning of the experiment
introduced much more degradation than at that stage than
predicted by March's analysis. In our experiments, the first
update to a frame always causes an extent to be allocated.
Hence, at the beginning of experiment 3 the chances of an
extent being allocated is very great. Once a frame gets an
extent, however, it does not need another until four additions
have been made to it since each extent can contain four
records. The same phenomenon can be observed in the ANEX curve
for experiment 1. It is not as pronounced since each extent
can contain only two records.

The variable ATRES also affects the behavior of the
performance measure FFPHY. As mentioned earlier, AVGE is the
average time to read an extent when extents are fetched
sequentially in chains. Therefore, the use of AVGE in the
equation for FFPHY is more accurate than the use of ATRES. The
AVGE curve (Figure 10) for experiment 3 indicates that the
value of AVGE remains fairly constant and is close to AVGD (the

8-23

average time to fetch an extent from a prime frame). This is
because extent chains tend to be short (since each extent can
hold four records) and hence most of the time to fetch a chain

is represented in the fetch of the first extent which is a

direct access of an extent (AVGD). Under these circumstances:

the theoretical value of ATRES will be close to AVGE and will
be a good estimation of it (compare AVGE and AVGD in Table 3).
Since ATRES is accurate it must be ANEXS which causes the
inaccuracy of the predictions of FFPHY in experiment 3.

The AVGE curve for experiment 1 is more interesting. Here
there is a sharp increase in the average time to read an extent
at the beginning of the experiment. This increase is due to
the fact that ldcal_extents are allocated at the beginning and
these can be ~accessed quickly. As the 1local extent areas
become full, global extents are allocated and the average time
to read an extent increases. March's ATRES variable does not
capture this behavior and tends to be higher than AVGE (much
higher at the beginning of the experiment).

The AVGE curve for experiment 2 shows a decrease in the
average time to read an extent as the experiment progresses.
This is due to the fact that no local extents are available and
as the extent chains grow longer (and they will since extents
can contain only one record) the time to move from one global
extent to another in the chain begins to have a greater affect
on the average time to read an extent. In spite of this
decrease in the value of AVGE, the value of FFPHY is predicted
closely in experiment 2. This is because initially ATRES is

8-24

— . o~ = -

close to AVGE but becomes a poorer estimate as time passes.
But the degradation at the beginning of the experiment has a
greater effect on an interval average than degradation that
occurs later. Hence, March's analysis predicts the early state
average degradation well for experiment 2 and this tends to
compensate for later poorer predictions when the interval
average 1is calculated. In contrast, for experiment 1 the
predicted early degradation 1is high and tihis aakes all
predicted interval averages high..

The AVGE curves for experiments 4 and 5 exhibit the same
behavior as the one for experiment l. However, the average
error in the predicted values for FFPHY for experiments 4 and 5
is lower than the error in experiment 1. This can be explained
as follows. For experiments 4 and 5 the local extents are
dissipated much more rapidly than in experiment 1. Experiment
4 concentrates most updates on only half the prime frame
cylinders, filling the local extent areas for these cylinders
quickly. In experiment 5, early overhead overflow causes the
allocation of extra extents.. Hence the period of low
degradation at the beginning of the experiment is shorter and
doesn't have as much or an effect on the interval average.

For experiments 1, 4, and 5 the behavior of the AVGE
variable is most responsible for the inaccurate predictions of
FFPHY. This is particularly evident in experiment 5 where the
addition of extents to handle overhead overflow actually
improve the prediction of FFPHY (discussed above). Compare

this to the effect that uneven allocation had in experiment 3

8-25

. e -
v .
e e S Mo ol e e -

where ANEX was close to the analytic value throughout the
experiment.

The following insights can be gleaned from the preceding
discussion: |

1. if AVGE is close to AVGD then March's ATRES will be a
good estimate of the average time to read an extent and
the behavior of the ANEX variable will determine the
average prediction error. This occurs when many
records can fit in an extent;

2. if AVGE and AVGD differ greatly then ATRES won't be a
good estimate of the average time to read an extent and
the effect of uneven and unexpected extent allocation
will be reduced. This occurs when extents can contain
only a few records;

3. 1if degradation is predicted accurately at the beginning
of the experiment then the average percent of error
will be 1less than 1if early degradation is poorly
predicted.

The analysis of the behavior of the FRTOK performance
measure is much simpler. Most of the discrepancy between the
predicted and observed values appears to be caused by the
difference between AVGD and ATRES. Experiment 2, which
predicted FRTOK the worst (10.48 percent average error), was
the one for which there was the largest percent of error
petween AVGD and ATRES at steady state (see Table 3).
Experiment 4 also had a large error between AVGD and ATRES but

this was compensated for somewhat by the fact that the predicted
8-26

value of VTK was slightly lower than the observed value.

The fact that AVGD 1is always greater than ATRES is
compatible with the fact that the observed value of FRTOK is
always greater than the predicted value.

VTIK, the proportion of records in extents, is a secondary
cause of error in the value of FRTOK. 1In the absence of any
overhead induced extents, it is equal to the function -~

f(nadd) = nadd/(16200 + nadd)

where nadd is the number of additions and 16200 is the number
of records initially loaded. This is not linear but is nearly
so. Records that get pushed out of the prime frame by
expansion will raise the proportion of records in extents but
not enought to seriously effect the calculation of FRTOK. For
instance, the value of FRTOK in experiment 5 (overhead induced
overflow) has a 7.59 percent average error whereas experiment 1
(very 1little overhead induced overflow) has a 4.44 percent
average error.

Finally, a comment is made on the ability of March's
analysis to predict the performance of a frame memory which is
used concurrently by two or more users. The frame memory used
to test the effect of more than one user had no local extents
since the advantage of local extents is lost when the head may
move before the local extent is accessed. In our experiment,
additional users did not affect the number and distribution of
extents, they only affected the time to fetch an extent. Since
only global extents were used in the experiment, the average

time to access an extent (AVGD or AVGE) was close to the average
8-27

b ombe Bt Rl A e ®

time to do a random access (see Table 4.3). Since March has
TRAN as one of the parameters to his equations and assumes the
ATRES = TRAN if there are no local extents, his predictions

were not adversely affected by a multiuser environment in

experiment 6.

Conclusion

Given the assumptions made, March's analysis appears to
predict the performance of a frame memory satisfactorily (i.e.,
within 10 percent) for the use for which it was designed - as a
tool to aid in the development of automatic data base design
systems. Furthermore, his predictors are robust since we
altered several of the assumptions and still observed
satisfactory results from his analysis. This robustness |is
achieved mainly by the Jjudicious choice of one of the
parameters of the analysis. This parameter, TRAN, 1is the
average timé to do a random access in the frame memory. Unlike
the other parameters used, TRAN is far from obvious and its
determination involves an insight into the performance
characteristcs of the frame memory whose performance is being
analyzed.

The frame memories which failed to perform as predicted by
March's analysis were those which represented less than optimal
designs. One of them used small extents but had no local
extent areas thereby forcing any addition to the frame memory

to be stored in the global extent area. Another one used large
8-28

Ama s — 2 e

R

v emm—— -

e e ——— = ——

extents resulting in a lot of unavallable free space and also
had no local extent areas. The frame memory which performed
best had medium sized extents and a local extent area.

March's analysis falters in the following situations:

1. 1If large extents are used, non-linear extent allocation
results, leading to non-linear degradation. March
assumes linear degradation.

2. When extents are in the global area, March's overall
estimate of the average time to read an extent is
incorrect. This occurs since during a frame read or
frame scan many extents in the global extent area are
close together thereby reducing the average time to
fetch the next extent.

3. TheAexpansion of indices can push records out of the
prime frame into extents. This phenomenon produces a
large number of unexpected extents if the overhead per
record is greater than 10 percent. However, March's
analysis produced satisfactory results when the
overhead per'record was approximately 10 percent.

In summary, the more extents a frame has the more
inaccurate is March's estimate of the average time to read an
extent. The number of extents can be reduced only by making
extents larger, thereby causing a non-linear pattern of extent
allocations. This has been shown to 1invalidate March's
assumption of linear degradation. This situation is not as
hopeless as it wmight sound. A reasonably simple set of

heuristics could be developed to assure that the decisions
8-29

Rt L TN

‘ﬂ

affecting these areas result in good data base designs which

will be predicted accurately by March's frame memory analysis.

Directions for Further Research

March has demonstrated the usefulness of viewing the update
induced change of performance of a data base over time as the
sum of the measure of performance of the data base at load time
and a time related measure of performance degradation. His
model of frame memory fits this approach very well. Prime
frames represent initial or non-degraded performance and
extents represent degradation of performance. His assumption
of linear degradation was shown to cause problems. This
assumption would not be necessary if a non-linear degradation
function were developed for each performance measure. These
functions could be based on time and the number of records per
extent. Even greater precision could be achieved if the
effects of overhead expansion were considered and the
assumption that the size of records was large compared to the
overhead they require could be dropped. A more rigorous
analysis than the one we performed would be necessary for the

devlopment of the non-linear degradation functions.

March's analysis could be made more complete if it didn't

have to rely so heavily on the average time to do a random
access. Ideally, what would be supplied as a parameter is the
function which describes the time to move the disk head a given
number of cylinders. The average time to do a random access
could then be calculated as part of the analysis.

8-30

|

A question which arises is whether more sophisticated data
structures (e.g., B-trees, differential files, etc.) are
amenable to analysis in terms of initial performance and some
time related degradation of performance. If so, the structures
could be classified according to their degradation functions.

Finally, an investigation could be made into transporting
these ideas to fields other than data base management. In
particular, the field of software quality measurement {is
interested in the degradation of performance (and quality) of
programs caused by code changes. The work presented here has
offered a model of change related degradation. Can this model
be adapted so that 1is provides a useful way of analyzing

program quality?

8-31

R LY Yy Y. U PSRN

-

R 4

e ———

N

mag L

frome
Records

Secondary Merory
frame frame
1 2 e

L o

FIGURE 1 A FRANE HOVARY -

- -
o -3 !
o s R IY4
" Ld o - o
-,
. P ‘0
e ” "[E'
- - o”

Frame Reference Stream
Fromg Record Tokens

FIGURE 2 FRANE RECORDS WIJUIN A FRAME

8-32

Frame
n

B

e
o
Frame

Records . e mad

-t

' -ty
fraoe frame §
“Froat® °Side”

FIGURE 3 FRAME RECORDS |

8-33

|

-

L

/"'_:::t.cq
refes
frovne
[LoTRY |
=
r‘":“! Clens? Catont

FIGURE & RELATION BETWEEN FRANE COMPONENTS AND STORAGE
OEYICE LOCALITIES

8-34

|
!
1}
]
t
)

v mm—— e -

- ——

Cxtent
Stze

L"('t'n'{?!f'im“l (Fad]

Ny

Legteal ” : a | e olu
Frame

=Py {ng Framg —o
{raat)

Physical
Storage ”
Areas coe

R

fleume 5 FaARE MAPPING TO FNTSICAL STORAGE AREAS

8-35

v . — -

e
g
L ,.;4‘?»
Kerta s TSRS N IRER e :.u'r oz e - LLA

- JE; ; , o

e e s

oy 'h‘\;?fﬁ’ - -\—mﬂ

L e
sV

PRI

0000

RANDOM ACCESS FUNCTION

40.00 80.00

PIGURE 6

8-36

Lo ¥ L
120:00 160.00 -200.00

CYLINDERS MOVED

o .

Y SOEREAT e M Sy L e
y ~'R'ﬂ:‘ﬂ'», :},g"‘i‘:‘;"“e"‘?f “s R

) ENDS OBSERVED CURVE.
X AXIS IS INTERVAL TINE. ¥ AXIS 1S VALUE OF FFPNWY

EXPERINENT 1 EXPERTIENT 4
o o
b °
‘o O*-
rY .
o o
o » ©
.00 41.00 82.00 '0.00 41.00 82.00
EXPERIMENT 2 EXPERIMENT S
< (=]
[7) o |
o4& o0
] []
-« o
- o
“0.00 41.00 82.00 .00 41.00 82.00
EXPERIMENT 3 EXPERIMENT 6
w0
~N o
L] '
il N
—-- SNd
[]
(7]
~ *
* T 1 v' T 1
".00 41.00 82.00 0.00 32.00 64.00

FIGURE 7 OBSERVED VS ANALYTIC INTERVAL AYERAGES FOR FFPNY

8-37

o

X

e, Soir et e 5

g SRR ARIEIERRY 7T D e T T R
e &w«;*%fm e L o P WK

o ENDS OBSERVED CURVE.
| X AXIS IS INTERVAL TIME. ¥ AX1S 1S VALUE OF FRYOX

, EXPERIMENT 1 EXPERIMENT 4
|
? [S B o0
| % ©
' [.l
' 0N [}
[[« -]
[] (7.]
” ~
“b. 00 41.00 82.00 “v.00 41.00 82.00
EXPERIMENT 2 EXPERIMENTY S
(-]
N -
w e
. -«
4 -3 (=)
-] -
(-] (-]
n —
S i} ; <
.00 41.00 g2.00 %
\
3 SXPERINENT 3 EXPERIMENT €
o w ,
“ y a
b ~ - !
. ::ﬂ 53‘.
- ("] w ‘
© v
b=y | L Q L] L] '
%. 00 41.00 82.00 “b.00 32.00 64.00

FIGURE 8 OBSEAVED V¥S ANALYTIC INTERVAL AVERAGES FOR FRYOK

8-38

* ENDS VSCN CURVE.
L X AXIS IS INTERVAL TIME. ¥V AXIS IS VSCH OR FYTK

L EAPERIMENT EXPERIMENT ¢
J
l N
° ©
- N-
N N
o (=]
5 c54 T —
.0 - 41.00 82.00 0.00 41.00 82.00
N
EXPERIMENT 2 EXPERIMENT S
N <
\ e S .
o~ o~ ;
i
~ - j
2. 2 ‘
%. 00 41.00 82.00 b.00 41.00 82.00
.: EXPERIMENTY 3 CXPERIMENT ¢
~N
° °
. i3

.02

32.00 64.00 r

Ai,
;02
o

=]

41.00 '82.00

FIGURE O OBSERVED YALUES FOR VSCN AND FVIK

8-39

¢ ENDS AVGD CURVE.
X AXIS 1S INTERVAL TIME. Y AXIS IS AVERAGE VINE VO READ AN EXTEWT

EXPERIMENT EXPERIMENT 4

o o

”» m

\ % ©

(=] (=]

[2] (2]

© T 1 4 . | U

"5.00 41.00 82.00 ‘"b.oo 41.00 82.00
EXPERIMENT 2 EXPERIMENT S

" "

o\ m-

[] (7]

< o

" . "

%.00 41.00 g82.00 'b.o00 41.00 82.00
EXPERIMENT 3 CEXPERIMENT ¢

x
B -8) 911 .81

.00 41.00 82.00 . 00 32.00 64.00

rieURE 10 OBSERVED VALUES FOR AVGD AND AVGE

8-40,

B it S SRS

¢ [NDS CVSERVED Cumve.

X AXIS IS INTERVAL TINC. Y AXIS 1S EXTENTS PER FRAME

EXPERINENT 1

EXPERIMENT 2

6-

%.00 41.00 82.00
EXPERIMENT 3

”

°©

~N

.03

.00 41.00 82.00

4.06

EXPERIMENT 4

41.00 82.00

EXPERIMENT S

o
Q
Oo
EXPERINCNT ¢
V;-
%.00 3‘2000 14-00

FIGURE 11 OBSEAVED VS ANALYTIC VALUES OF ANEX

. e e—— o e

- - s

REFERENCES

MAR77 March, S. T., Severance, D. G., "The Determination of
Efficient Segmentation and Blocking Factors for
Shared Data Files. ACM Transactions on Database
Systems 2, 3 (September 1977), 279-296.

MAR78 March, S. T., "Models of Storage Structures and the
Design of Database Records Based Upon a User
Characterization", Ph.D. Dissertation, University
of Minnesota, 1978.

ST076 Stonebraker, M., Wong, E., Kreps, P., "The Design and
Implementation of INGRES", ACM Transactions on
Database Systems 1, 3 (September 1976), 189-222.

- ——— e i * .

C—cew - = .- et ot omaee

.

